Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
Chem Biol Interact. 2013 Mar 25;203(1):57-62. doi: 10.1016/j.cbi.2012.08.003. Epub 2012 Aug 11.
It can be argued that an ideal anti-cocaine medication would be one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, wild-type BChE has a low catalytic efficiency against naturally occurring (-)-cocaine. Interestingly, wild-type BChE has a much higher catalytic activity against unnatural (+)-cocaine. According to available positron emission tomography (PET) imaging analysis using (11)C-cocaine and (11)C-cocaine tracers in human subjects, only (11)C-cocaine was observed in the brain, whereas no significant (11)C-cocaine signal was observed in the brain. The available PET data imply that an effective therapeutic enzyme for treatment of cocaine abuse could be an exogenous cocaine-metabolizing enzyme with a catalytic activity against (-)-cocaine comparable to that of wild-type BChE against (+)-cocaine. Our recently designed A199S/F227A/S287G/A328 W/Y332G mutant of human BChE has a considerably improved catalytic efficiency against (-)-cocaine and has been proven active in vivo. In the present study, we have characterized the catalytic activities of wild-type BChE and the A199S/F227A/S287G/A328 W/Y332G mutant against both (+)- and (-)-cocaine at the same time under the same experimental conditions. Based on the obtained kinetic data, the A199S/F227A/S287G/A328 W/Y332G mutant has a similarly high catalytic efficiency (kcat/KM) against (+)- and (-)-cocaine, and indeed has a catalytic efficiency (k(cat/)K(M) = 1.84 × 10(9) M(-1) min(-1)) against (-)-cocaine comparable to that (k(cat)/K(M) = 1.37 × 10(9) M(-1) min(-1)) of wild-type BChE against (+)-cocaine. Thus, the mutant may be used to effectively prevent (-)-cocaine from entering brain and producing physiological effects in the enzyme-based treatment of cocaine abuse.
可以说,理想的抗可卡因药物应该是一种通过类似于主要可卡因代谢途径的途径加速可卡因代谢,产生生物上无活性的代谢物的药物,即通过血浆中的丁酰胆碱酯酶(BChE)催化水解。然而,野生型 BChE 对天然存在的(-)-可卡因的催化效率较低。有趣的是,野生型 BChE 对非天然(+)-可卡因具有更高的催化活性。根据在人类受试者中使用[(11)C](-)-可卡因和[(11)C](+)-可卡因示踪剂进行的可用正电子发射断层扫描(PET)成像分析,仅在大脑中观察到[(11)C](-)-可卡因,而在大脑中未观察到显著的[(11)C](+)-可卡因信号。可用的 PET 数据表明,用于治疗可卡因滥用的有效治疗酶可能是一种外源性可卡因代谢酶,其对(-)-可卡因的催化活性与野生型 BChE 对(+)-可卡因的催化活性相当。我们最近设计的 A199S/F227A/S287G/A328 W/Y332G 人 BChE 突变体对(-)-可卡因的催化效率有了相当大的提高,并已在体内证明是有效的。在本研究中,我们同时在相同的实验条件下对野生型 BChE 和 A199S/F227A/S287G/A328 W/Y332G 突变体对(+)-和(-)-可卡因的催化活性进行了表征。根据获得的动力学数据,A199S/F227A/S287G/A328 W/Y332G 突变体对(+)-和(-)-可卡因具有相似的高催化效率(kcat/KM),并且实际上对(-)-可卡因的催化效率(kcat/KM = 1.84×10(9)M(-1)min(-1))与野生型 BChE 对(+)-可卡因的催化效率(kcat/KM = 1.37×10(9)M(-1)min(-1))相当。因此,该突变体可用于有效阻止(-)-可卡因进入大脑并在基于酶的可卡因滥用治疗中产生生理作用。