Suppr超能文献

调控网络中致死性和合成致死性基因敲除的预测

Prediction of lethal and synthetically lethal knock-outs in regulatory networks.

作者信息

Boldhaus Gunnar, Greil Florian, Klemm Konstantin

机构信息

Bioinformatics Group, Institute for Computer Science, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.

出版信息

Theory Biosci. 2013 Mar;132(1):17-25. doi: 10.1007/s12064-012-0164-1. Epub 2012 Aug 24.

Abstract

The complex interactions involved in regulation of a cell's function are captured by its interaction graph. More often than not, detailed knowledge about enhancing or suppressive regulatory influences and cooperative effects is lacking and merely the presence or absence of directed interactions is known. Here, we investigate to which extent such reduced information allows to forecast the effect of a knock-out or a combination of knock-outs. Specifically, we ask in how far the lethality of eliminating nodes may be predicted by their network centrality, such as degree and betweenness, without knowing the function of the system. The function is taken as the ability to reproduce a fixed point under a discrete Boolean dynamics. We investigate two types of stochastically generated networks: fully random networks and structures grown with a mechanism of node duplication and subsequent divergence of interactions. On all networks we find that the out-degree is a good predictor of the lethality of a single node knock-out. For knock-outs of node pairs, the fraction of successors shared between the two knocked-out nodes (out-overlap) is a good predictor of synthetic lethality. Out-degree and out-overlap are locally defined and computationally simple centrality measures that provide a predictive power close to the optimal predictor.

摘要

细胞功能调控中涉及的复杂相互作用由其相互作用图来体现。通常情况下,我们缺乏关于增强或抑制性调控影响以及协同效应的详细知识,仅知道有向相互作用的存在与否。在此,我们研究这种简化信息在多大程度上能够预测基因敲除或基因敲除组合的效果。具体而言,我们探讨在不了解系统功能的情况下,通过节点的网络中心性(如度和介数)来预测消除节点的致死性的程度。这里的功能被定义为在离散布尔动力学下重现不动点的能力。我们研究了两种随机生成的网络:完全随机网络以及通过节点复制和后续相互作用分歧机制生长的结构。在所有网络中,我们发现出度是单个节点敲除致死性的良好预测指标。对于节点对的敲除,两个被敲除节点之间共享的后继节点比例(出重叠)是合成致死性的良好预测指标。出度和出重叠是局部定义且计算简单的中心性度量,它们提供的预测能力接近最优预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验