Suppr超能文献

蛋白质相互作用网络的复制-分化模型

Duplication-divergence model of protein interaction network.

作者信息

Ispolatov I, Krapivsky P L, Yuryev A

机构信息

Ariadne Genomics Inc., Rockville, Maryland 20850, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061911. doi: 10.1103/PhysRevE.71.061911. Epub 2005 Jun 22.

Abstract

We investigate a very simple model describing the evolution of protein-protein interaction networks via duplication and divergence. The model exhibits a remarkably rich behavior depending on a single parameter, the probability to retain a duplicated link during divergence. When this parameter is large, the network growth is not self-averaging and an average node degree increases algebraically. The lack of self-averaging results in a great diversity of networks grown out of the same initial condition. When less than a half of links are (on average) preserved after divergence, the growth is self-averaging, the average degree increases very slowly or tends to a constant, and a degree distribution has a power-law tail. The predicted degree distributions are in a very good agreement with the distributions observed in real protein networks.

摘要

我们研究了一个非常简单的模型,该模型通过复制和分化来描述蛋白质-蛋白质相互作用网络的演化。该模型根据一个单一参数(即分化过程中保留复制链接的概率)展现出极为丰富的行为。当此参数较大时,网络增长并非自平均的,平均节点度代数增长。缺乏自平均性导致从相同初始条件生长出的网络具有极大的多样性。当分化后(平均)保留的链接少于一半时,增长是自平均的,平均度增长非常缓慢或趋于恒定,并且度分布具有幂律尾部。预测的度分布与在真实蛋白质网络中观察到的分布非常吻合。

相似文献

1
Duplication-divergence model of protein interaction network.蛋白质相互作用网络的复制-分化模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061911. doi: 10.1103/PhysRevE.71.061911. Epub 2005 Jun 22.
2
Characterization of degree frequency distribution in protein interaction networks.蛋白质相互作用网络中度频率分布的特征描述。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031901. doi: 10.1103/PhysRevE.71.031901. Epub 2005 Mar 3.
3
Questioning the ubiquity of neofunctionalization.质疑新功能化的普遍性。
PLoS Comput Biol. 2009 Jan;5(1):e1000252. doi: 10.1371/journal.pcbi.1000252. Epub 2009 Jan 2.
7
Clustering coefficients of protein-protein interaction networks.蛋白质-蛋白质相互作用网络的聚类系数
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051910. doi: 10.1103/PhysRevE.75.051910. Epub 2007 May 16.

引用本文的文献

4
Empirically classifying network mechanisms.实证分类网络机制。
Sci Rep. 2021 Oct 15;11(1):20501. doi: 10.1038/s41598-021-99251-7.
6
Revisiting Parameter Estimation in Biological Networks: Influence of Symmetries.重新审视生物网络中的参数估计:对称性的影响。
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):836-849. doi: 10.1109/TCBB.2020.2980260. Epub 2021 Jun 3.

本文引用的文献

1
Network growth by copying.通过复制实现网络增长。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2A):036118. doi: 10.1103/PhysRevE.71.036118. Epub 2005 Mar 17.
3
Some asymptotic properties of duplication graphs.复制图的一些渐近性质。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066119. doi: 10.1103/PhysRevE.68.066119. Epub 2003 Dec 30.
4
Duplication models for biological networks.生物网络的复制模型。
J Comput Biol. 2003;10(5):677-87. doi: 10.1089/106652703322539024.
6
7
8
Infinite-order percolation and giant fluctuations in a protein interaction network.蛋白质相互作用网络中的无穷阶渗流与巨大涨落
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):055101. doi: 10.1103/PhysRevE.66.055101. Epub 2002 Nov 11.
9
Expanding protein universe and its origin from the biological Big Bang.不断扩展的蛋白质世界及其源于生物大爆炸的起源。
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14132-6. doi: 10.1073/pnas.202497999. Epub 2002 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验