Suppr超能文献

复杂脑网络中结构与功能连接模式之间的关系。

The relation between structural and functional connectivity patterns in complex brain networks.

作者信息

Stam C J, van Straaten E C W, Van Dellen E, Tewarie P, Gong G, Hillebrand A, Meier J, Van Mieghem P

机构信息

Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam, The Netherlands.

Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.

Abstract

OBJECTIVE

An important problem in systems neuroscience is the relation between complex structural and functional brain networks. Here we use simulations of a simple dynamic process based upon the susceptible-infected-susceptible (SIS) model of infection dynamics on an empirical structural brain network to investigate the extent to which the functional interactions between any two brain areas depend upon (i) the presence of a direct structural connection; and (ii) the degree product of the two areas in the structural network.

METHODS

For the structural brain network, we used a 78×78 matrix representing known anatomical connections between brain regions at the level of the AAL atlas (Gong et al., 2009). On this structural network we simulated brain dynamics using a model derived from the study of epidemic processes on networks. Analogous to the SIS model, each vertex/brain region could be in one of two states (inactive/active) with two parameters β and δ determining the transition probabilities. First, the phase transition between the fully inactive and partially active state was investigated as a function of β and δ. Second, the statistical interdependencies between time series of node states were determined (close to and far away from the critical state) with two measures: (i) functional connectivity based upon the correlation coefficient of integrated activation time series; and (ii) effective connectivity based upon conditional co-activation at different time intervals.

RESULTS

We find a phase transition between an inactive and a partially active state for a critical ratio τ=β/δ of the transition rates in agreement with the theory of SIS models. Slightly above the critical threshold, node activity increases with degree, also in line with epidemic theory. The functional, but not the effective connectivity matrix closely resembled the underlying structural matrix. Both functional connectivity and, to a lesser extent, effective connectivity were higher for connected as compared to disconnected (i.e.: not directly connected) nodes. Effective connectivity scaled with the degree product. For functional connectivity, a weaker scaling relation was only observed for disconnected node pairs. For random networks with the same degree distribution as the original structural network, similar patterns were seen, but the scaling exponent was significantly decreased especially for effective connectivity.

CONCLUSIONS

Even with a very simple dynamical model it can be shown that functional relations between nodes of a realistic anatomical network display clear patterns if the system is studied near the critical transition. The detailed nature of these patterns depends on the properties of the functional or effective connectivity measure that is used. While the strength of functional interactions between any two nodes clearly depends upon the presence or absence of a direct connection, this study has shown that the degree product of the nodes also plays a large role in explaining interaction strength, especially for disconnected nodes and in combination with an effective connectivity measure. The influence of degree product on node interaction strength probably reflects the presence of large numbers of indirect connections.

摘要

目的

系统神经科学中的一个重要问题是复杂的大脑结构网络与功能网络之间的关系。在此,我们基于经验性大脑结构网络上的感染动力学易感-感染-易感(SIS)模型,对一个简单动态过程进行模拟,以研究任意两个脑区之间的功能相互作用在多大程度上取决于:(i)直接结构连接的存在;以及(ii)结构网络中这两个区域的度乘积。

方法

对于大脑结构网络,我们使用了一个78×78的矩阵,该矩阵表示AAL图谱(龚等人,2009年)层面上脑区之间已知的解剖连接。在这个结构网络上,我们使用一个源自网络上流行病过程研究的模型来模拟大脑动力学。类似于SIS模型,每个顶点/脑区可以处于两种状态之一(非活跃/活跃),有两个参数β和δ决定转变概率。首先,研究完全非活跃状态和部分活跃状态之间的相变作为β和δ的函数。其次,使用两种方法确定节点状态时间序列之间的统计相互依赖性(接近和远离临界状态):(i)基于整合激活时间序列的相关系数的功能连接性;以及(ii)基于不同时间间隔的条件共激活的有效连接性。

结果

我们发现,对于转变速率的临界比τ = β/δ,在非活跃状态和部分活跃状态之间存在相变,这与SIS模型理论一致。略高于临界阈值时,节点活动随度增加,这也与流行病理论相符。功能连接性矩阵与基础结构矩阵非常相似,但有效连接性矩阵并非如此。与未连接(即:未直接连接)的节点相比,连接的节点的功能连接性以及在较小程度上的有效连接性更高。有效连接性随度乘积缩放。对于功能连接性,仅在未连接的节点对中观察到较弱的缩放关系。对于与原始结构网络具有相同度分布的随机网络,也观察到了类似的模式,但缩放指数显著降低,尤其是对于有效连接性。

结论

即使使用非常简单的动力学模型也可以表明,如果在临界转变附近研究该系统,现实解剖网络节点之间的功能关系会呈现出清晰的模式。这些模式的详细性质取决于所使用的功能或有效连接性度量的属性。虽然任意两个节点之间功能相互作用的强度显然取决于直接连接的存在与否,但本研究表明,节点的度乘积在解释相互作用强度方面也起着很大作用,特别是对于未连接的节点以及与有效连接性度量相结合时。度乘积对节点相互作用强度的影响可能反映了大量间接连接的存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验