Suppr超能文献

(68)锗/(68)镓发生器:过去、现在与未来。

(68)Ge/ (68)Ga generators: past, present, and future.

作者信息

Rösch F

机构信息

Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany.

出版信息

Recent Results Cancer Res. 2013;194:3-16. doi: 10.1007/978-3-642-27994-2_1.

Abstract

In 1964, first (68)Ge/(68)Ga radionuclide generators were described. Although the generator design was by far not adequate to our today's level of chemical, radiopharmaceutical and medical expectations, it perfectly met the needs of molecular imaging of this period. (68)Ga-EDTA as directly eluted from the generators entered the field of functional diagnosis, in particular for brain imaging. A new type of generators became commercially available in the first years of the 21st century. Generator eluates based on hydrochloric acid provided "cationic" (68)Ga instead of "inert" (68)Ga-complexes and opened new pathways of Me(III) based radiopharmaceutical chemistry. The impressive success of utilizing (68)Ga- DOTA-octreotides and PET/CT instead of e.g., (111)In-DTPA-octreoscan and SPECT paved the way not only towards clinical acceptance of this particular tracer for imaging neuroendocrine tracers, but to the realisation of the great potential of the (68)Ge/(68)Ga generator for modern nuclear medicine in general. The last decade has seen a (68)Ga rush. Increasing applications of generator based (68)Ga radiopharmaceuticals (for diagnosis alone, but increasingly for treatment planning thanks to the inherent option as expressed by THERANOSTICS), now ask for further developments - towards the optimization of (68)Ge/(68)Ga generators both from chemical and regulatory points of view. Dedicated chelators may be required to broaden the feasibility of (68)Ga labeling of more sensitive targeting vectors and generator chemistry may be adopted to those chelators - or vice versa. This review describes the development and the current status of (68)Ge/(68)Ga radionuclide generators.

摘要

1964年,首批(68)锗/(68)镓放射性核素发生器问世。尽管当时的发生器设计远未达到我们如今对化学、放射性药物及医学的期望水平,但它完美地满足了那个时期分子成像的需求。从发生器中直接洗脱得到的(68)镓 - 乙二胺四乙酸进入了功能诊断领域,尤其用于脑成像。21世纪初,一种新型发生器开始商业化。基于盐酸的发生器洗脱液提供了“阳离子型”(68)镓,而非“惰性”(68)镓配合物,开启了基于三价金属的放射性药物化学的新途径。使用(68)镓 - 多胺大环配体 - 奥曲肽和正电子发射断层扫描/计算机断层扫描(PET/CT)而非例如(111)铟 - 二乙三胺五乙酸 - 奥曲肽扫描和单光子发射计算机断层扫描(SPECT)所取得的显著成功,不仅为这种特定示踪剂用于神经内分泌示踪剂成像的临床接受度铺平了道路,也为(68)锗/(68)镓发生器在现代核医学中的巨大潜力的实现奠定了基础。过去十年见证了(68)镓的热潮。基于发生器的(68)镓放射性药物的应用不断增加(起初仅用于诊断,但由于治疗诊断学所表达的内在选择,越来越多地用于治疗规划),现在需要进一步发展——从化学和监管角度优化(68)锗/(68)镓发生器。可能需要专用螯合剂来拓宽(68)镓标记更敏感靶向载体的可行性,并且发生器化学可能要适用于那些螯合剂——反之亦然。本综述描述了(68)锗/(68)镓放射性核素发生器的发展及现状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验