Suppr超能文献

层 2/3 神经元的差异布线驱动新皮层发育过程中的稀疏和可靠放电。

Differential wiring of layer 2/3 neurons drives sparse and reliable firing during neocortical development.

机构信息

Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Cereb Cortex. 2013 Nov;23(11):2690-9. doi: 10.1093/cercor/bhs257. Epub 2012 Aug 23.

Abstract

Sensory information is transmitted with high fidelity across multiple synapses until it reaches the neocortex. There, individual neurons exhibit enormous variability in responses. The source of this diversity in output has been debated. Using transgenic mice expressing the green fluorescent protein coupled to the activity-dependent gene c-fos, we identified neurons with a history of elevated activity in vivo. Focusing on layer 4 to layer 2/3 connections, a site of strong excitatory drive at an initial stage of cortical processing, we find that fluorescently tagged neurons receive significantly greater excitatory and reduced inhibitory input compared with neighboring, unlabeled cells. Differential wiring of layer 2/3 neurons arises early in development and requires sensory input to be established. Stronger connection strength is not associated with evidence for recent synaptic plasticity, suggesting that these more active ensembles may not be generated over short time scales. Paired recordings show fosGFP+ neurons spike at lower stimulus thresholds than neighboring, fosGFP- neurons. These data indicate that differences in circuit construction can underlie response heterogeneity amongst neocortical neurons.

摘要

感觉信息在跨越多个突触时以高保真度传输,直到到达新皮层。在那里,单个神经元在反应中表现出巨大的可变性。输出多样性的来源一直存在争议。使用表达与活性依赖性基因 c-fos 偶联的绿色荧光蛋白的转基因小鼠,我们鉴定出了体内活性升高的神经元。我们关注的是第 4 层到第 2/3 层的连接,这是皮质处理初始阶段的强烈兴奋性驱动部位,我们发现与相邻的未标记细胞相比,荧光标记的神经元接收到的兴奋性输入显著增加,而抑制性输入减少。第 2/3 层神经元的差异布线在发育早期出现,并需要感觉输入来建立。更强的连接强度与最近突触可塑性的证据无关,这表明这些更活跃的集合可能不是在短时间内产生的。成对记录显示 fosGFP+神经元的刺激阈值低于相邻的 fosGFP-神经元。这些数据表明,电路结构的差异可以解释新皮层神经元之间的反应异质性。

相似文献

1
Differential wiring of layer 2/3 neurons drives sparse and reliable firing during neocortical development.
Cereb Cortex. 2013 Nov;23(11):2690-9. doi: 10.1093/cercor/bhs257. Epub 2012 Aug 23.
2
In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.
Curr Biol. 2011 Oct 11;21(19):1593-602. doi: 10.1016/j.cub.2011.08.028. Epub 2011 Sep 22.
4
Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex.
J Neurophysiol. 2012 Jun;107(11):3116-34. doi: 10.1152/jn.00917.2011. Epub 2012 Mar 7.
5
An embedded subnetwork of highly active neurons in the neocortex.
Neuron. 2010 Dec 22;68(6):1043-50. doi: 10.1016/j.neuron.2010.11.029.
8
FosGFP expression does not capture a sensory learning-related engram in superficial layers of mouse barrel cortex.
Proc Natl Acad Sci U S A. 2021 Dec 28;118(52). doi: 10.1073/pnas.2112212118.
9
Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons.
J Neurosci. 2011 Mar 23;31(12):4456-65. doi: 10.1523/JNEUROSCI.6042-10.2011.

引用本文的文献

2
Modeling circuit mechanisms of opposing cortical responses to visual flow perturbations.
PLoS Comput Biol. 2024 Mar 7;20(3):e1011921. doi: 10.1371/journal.pcbi.1011921. eCollection 2024 Mar.
3
FosGFP expression does not capture a sensory learning-related engram in superficial layers of mouse barrel cortex.
Proc Natl Acad Sci U S A. 2021 Dec 28;118(52). doi: 10.1073/pnas.2112212118.
4
Leveraging heterogeneity for neural computation with fading memory in layer 2/3 cortical microcircuits.
PLoS Comput Biol. 2019 Apr 25;15(4):e1006781. doi: 10.1371/journal.pcbi.1006781. eCollection 2019 Apr.
5
Emergence of preconfigured and plastic time-compressed sequences in early postnatal development.
Science. 2019 Jan 11;363(6423):168-173. doi: 10.1126/science.aav0502.
6
Structured networks support sparse traveling waves in rodent somatosensory cortex.
Proc Natl Acad Sci U S A. 2018 May 15;115(20):5277-5282. doi: 10.1073/pnas.1710202115. Epub 2018 Apr 30.
7
Neuroadaptations in the dentate gyrus following contextual cued reinstatement of methamphetamine seeking.
Brain Struct Funct. 2018 Jun;223(5):2197-2211. doi: 10.1007/s00429-018-1615-3. Epub 2018 Feb 13.
8
Neurogenesis during Abstinence Is Necessary for Context-Driven Methamphetamine-Related Memory.
J Neurosci. 2018 Feb 21;38(8):2029-2042. doi: 10.1523/JNEUROSCI.2011-17.2018. Epub 2018 Jan 23.
9
Stimulation triggers endogenous activity patterns in cultured cortical networks.
Sci Rep. 2017 Aug 22;7(1):9080. doi: 10.1038/s41598-017-08369-0.
10
Arc expression identifies the lateral amygdala fear memory trace.
Mol Psychiatry. 2016 Mar;21(3):364-75. doi: 10.1038/mp.2015.18. Epub 2015 Mar 24.

本文引用的文献

1
Experimental evidence for sparse firing in the neocortex.
Trends Neurosci. 2012 Jun;35(6):345-55. doi: 10.1016/j.tins.2012.03.008. Epub 2012 May 12.
2
Synaptic mechanisms underlying sparse coding of active touch.
Neuron. 2011 Mar 24;69(6):1160-75. doi: 10.1016/j.neuron.2011.02.022.
3
Effects and mechanisms of wakefulness on local cortical networks.
Neuron. 2011 Mar 24;69(6):1061-8. doi: 10.1016/j.neuron.2011.02.040.
4
Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons.
J Neurosci. 2011 Mar 23;31(12):4456-65. doi: 10.1523/JNEUROSCI.6042-10.2011.
5
Cell diversity and connection specificity between callosal projection neurons in the frontal cortex.
J Neurosci. 2011 Mar 9;31(10):3862-70. doi: 10.1523/JNEUROSCI.5795-10.2011.
6
A synaptic organizing principle for cortical neuronal groups.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5419-24. doi: 10.1073/pnas.1016051108. Epub 2011 Mar 7.
7
Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4188-93. doi: 10.1073/pnas.1100647108. Epub 2011 Feb 22.
8
An embedded subnetwork of highly active neurons in the neocortex.
Neuron. 2010 Dec 22;68(6):1043-50. doi: 10.1016/j.neuron.2010.11.029.
9
Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content.
Nat Neurosci. 2010 Oct;13(10):1276-82. doi: 10.1038/nn.2630. Epub 2010 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验