Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
Cereb Cortex. 2013 Nov;23(11):2690-9. doi: 10.1093/cercor/bhs257. Epub 2012 Aug 23.
Sensory information is transmitted with high fidelity across multiple synapses until it reaches the neocortex. There, individual neurons exhibit enormous variability in responses. The source of this diversity in output has been debated. Using transgenic mice expressing the green fluorescent protein coupled to the activity-dependent gene c-fos, we identified neurons with a history of elevated activity in vivo. Focusing on layer 4 to layer 2/3 connections, a site of strong excitatory drive at an initial stage of cortical processing, we find that fluorescently tagged neurons receive significantly greater excitatory and reduced inhibitory input compared with neighboring, unlabeled cells. Differential wiring of layer 2/3 neurons arises early in development and requires sensory input to be established. Stronger connection strength is not associated with evidence for recent synaptic plasticity, suggesting that these more active ensembles may not be generated over short time scales. Paired recordings show fosGFP+ neurons spike at lower stimulus thresholds than neighboring, fosGFP- neurons. These data indicate that differences in circuit construction can underlie response heterogeneity amongst neocortical neurons.
感觉信息在跨越多个突触时以高保真度传输,直到到达新皮层。在那里,单个神经元在反应中表现出巨大的可变性。输出多样性的来源一直存在争议。使用表达与活性依赖性基因 c-fos 偶联的绿色荧光蛋白的转基因小鼠,我们鉴定出了体内活性升高的神经元。我们关注的是第 4 层到第 2/3 层的连接,这是皮质处理初始阶段的强烈兴奋性驱动部位,我们发现与相邻的未标记细胞相比,荧光标记的神经元接收到的兴奋性输入显著增加,而抑制性输入减少。第 2/3 层神经元的差异布线在发育早期出现,并需要感觉输入来建立。更强的连接强度与最近突触可塑性的证据无关,这表明这些更活跃的集合可能不是在短时间内产生的。成对记录显示 fosGFP+神经元的刺激阈值低于相邻的 fosGFP-神经元。这些数据表明,电路结构的差异可以解释新皮层神经元之间的反应异质性。