Tavan P, Grubmüller H, Kühnel H
Physik-Department, Technische Universität München, Garching, Federal Republic of Germany.
Biol Cybern. 1990;64(2):95-105. doi: 10.1007/BF02331338.
We extend the neural concepts of topological feature maps towards self-organization of auto-associative memory and hierarchical pattern classification. As is well-known, topological maps for statistical data sets store information on the associated probability densities. To extract that information we introduce a recurrent dynamics of signal processing. We show that the dynamics converts a topological map into an auto-associative memory for real-valued feature vectors which is capable to perform a cluster analysis. The neural network scheme thus developed represents a generalization of non-linear matrix-type associative memories. The results naturally lead to the concept of a feature atlas and an associated scheme of self-organized, hierarchical pattern classification.
我们将拓扑特征图的神经概念扩展到自组织自联想记忆和层次模式分类。众所周知,统计数据集的拓扑图存储有关相关概率密度的信息。为了提取该信息,我们引入了信号处理的循环动力学。我们表明,这种动力学将拓扑图转换为用于实值特征向量的自联想记忆,该记忆能够执行聚类分析。由此开发的神经网络方案代表了非线性矩阵型联想记忆的推广。这些结果自然地引出了特征图谱的概念以及自组织层次模式分类的相关方案。