Kunstmann N, Hillermeier C, Rabus B, Tavan P
Institut für Medizinische Optik, Theoretische Biophysik, Ludwig-Maximilians-Universität München, Germany.
Biol Cybern. 1994;72(2):119-32. doi: 10.1007/BF00205976.
Nonlinear associative memories as realized, e.g., by Hopfield nets are characterized by attractor-type dynamics. When fed with a starting pattern, they converge to exactly one of the stored patterns which is supposed to be most similar. These systems cannot render hypotheses of classification, i.e., render several possible answers to a given classification problem. Inspired by von der Malsburg's correlation theory of brain function, we extend conventional neural network architectures by introducing additional dynamical variables. Assuming an oscillatory time structure of neural firing, i.e., the existence of neural clocks, we assign a so-called phase to each formal neuron. The phases explicitly describe detailed correlations of neural activities neglected in conventional neural network architectures. Implementing this extension into a simple self-organizing network based on a feature map, we present an associative memory that actually is capable of forming hypotheses of classification.
例如由霍普菲尔德网络实现的非线性联想记忆,其特点是具有吸引子类型的动力学。当输入一个起始模式时,它们会收敛到恰好一个被认为最相似的存储模式。这些系统无法给出分类假设,即针对给定的分类问题给出几个可能的答案。受冯·德·马尔堡大脑功能相关理论的启发,我们通过引入额外的动态变量来扩展传统的神经网络架构。假设神经放电具有振荡时间结构,即存在神经时钟,我们为每个形式神经元赋予一个所谓的相位。这些相位明确描述了传统神经网络架构中被忽略的神经活动的详细相关性。将这种扩展应用到基于特征映射的简单自组织网络中,我们提出了一种实际上能够形成分类假设的联想记忆。