Suppr超能文献

在可极化大分子力场中,对溶液中的局部介电常数和静电势进行自洽处理。

Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields.

机构信息

Center for Molecular Modeling, DCB∕CIT, National Institutes of Health, U.S. DHHS, Bethesda, Maryland 20892, USA.

出版信息

J Chem Phys. 2012 Aug 21;137(7):074102. doi: 10.1063/1.4742910.

Abstract

A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

摘要

本文提出了一种自洽方法,用于计算任意形状和电荷分布的溶质在极性和极化液体中产生的局部介电常数和静电势。液体在溶质/液体界面处的结构和动力学行为决定了密度和介电响应的空间变化。本文的重点是界面的处理。该方法是连续蛋白质静电学中常用方法的扩展,可用于估计液体在溶质内电荷重新分布时其静态介电响应的变化。这在极化力场的背景下最为相关,在量子化学计算中的电子结构优化期间或在电荷转移期间。该方法计算效率高,非常适合代码并行化,可用于具有大的和异质电荷分布的系统(如蛋白质、核酸和聚电解质)的动力学模拟中的局部介电常数的即时计算。本文还讨论了一般情况下具有场相关介电响应的液体的系统自由能的数值计算。

相似文献

3
Some practical approaches to treating electrostatic polarization of proteins.
Acc Chem Res. 2014 Sep 16;47(9):2795-803. doi: 10.1021/ar500094n. Epub 2014 Jun 2.
7
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19.
9
Liquid-structure forces and electrostatic modulation of biomolecular interactions in solution.
J Phys Chem B. 2007 Jan 11;111(1):227-41. doi: 10.1021/jp0647479.
10
Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models.
Biophys J. 2009 Jan;96(2):385-402. doi: 10.1016/j.bpj.2008.09.048.

引用本文的文献

1
Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters.
Nanoscale Adv. 2021 Apr 28;3(11):2995-3027. doi: 10.1039/d1na00086a.
2
Self-adaptive multiscaling algorithm for efficient simulations of many-protein systems in crowded conditions.
Phys Chem Chem Phys. 2018 Nov 21;20(45):28544-28557. doi: 10.1039/c8cp05517c.
3
Implicit treatment of solvent dispersion forces in protein simulations.
J Comput Chem. 2014 Aug 15;35(22):1621-9. doi: 10.1002/jcc.23655. Epub 2014 Jun 12.

本文引用的文献

1
Airborne virus transmission via respiratory droplets: Effects of droplet evaporation and sedimentation.
Curr Opin Colloid Interface Sci. 2021 Oct;55:101471. doi: 10.1016/j.cocis.2021.101471. Epub 2021 May 29.
2
Charge regulation and local dielectric function in planar polyelectrolyte brushes.
J Chem Phys. 2012 Jun 21;136(23):234901. doi: 10.1063/1.4729158.
3
Water-exclusion and liquid-structure forces in implicit solvation.
J Phys Chem B. 2011 Dec 15;115(49):14668-82. doi: 10.1021/jp208184e. Epub 2011 Nov 15.
4
Electrostriction in electrolyte solutions.
Chem Rev. 2011 Apr 13;111(4):2761-83. doi: 10.1021/cr100130d. Epub 2011 Feb 14.
5
Differential geometry based solvation model I: Eulerian formulation.
J Comput Phys. 2010 Nov 1;229(22):8231-8258. doi: 10.1016/j.jcp.2010.06.036.
6
Fluctuations of water near extended hydrophobic and hydrophilic surfaces.
J Phys Chem B. 2010 Feb 4;114(4):1632-7. doi: 10.1021/jp909048f.
7
Beyond the Poisson-Boltzmann model: modeling biomolecule-water and water-water interactions.
Phys Rev Lett. 2009 Feb 27;102(8):087801. doi: 10.1103/PhysRevLett.102.087801. Epub 2009 Feb 24.
9
Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
J Phys Chem B. 2008 Jan 17;112(2):270-5. doi: 10.1021/jp074900e. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验