Suppr超能文献

维度对重叠超球和超正方体的连续渗流的影响。二、模拟结果与分析。

Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes. II. Simulation results and analyses.

机构信息

Department of Chemistry, Princeton Center for Theoretical Science, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

J Chem Phys. 2012 Aug 21;137(7):074106. doi: 10.1063/1.4742750.

Abstract

In the first paper of this series [S. Torquato, J. Chem. Phys. 136, 054106 (2012)], analytical results concerning the continuum percolation of overlapping hyperparticles in d-dimensional Euclidean space R(d) were obtained, including lower bounds on the percolation threshold. In the present investigation, we provide additional analytical results for certain cluster statistics, such as the concentration of k-mers and related quantities, and obtain an upper bound on the percolation threshold η(c). We utilize the tightest lower bound obtained in the first paper to formulate an efficient simulation method, called the rescaled-particle algorithm, to estimate continuum percolation properties across many space dimensions with heretofore unattained accuracy. This simulation procedure is applied to compute the threshold η(c) and associated mean number of overlaps per particle N(c) for both overlapping hyperspheres and oriented hypercubes for 3 ≤ d ≤ 11. These simulations results are compared to corresponding upper and lower bounds on these percolation properties. We find that the bounds converge to one another as the space dimension increases, but the lower bound provides an excellent estimate of η(c) and N(c), even for relatively low dimensions. We confirm a prediction of the first paper in this series that low-dimensional percolation properties encode high-dimensional information. We also show that the concentration of monomers dominate over concentration values for higher order clusters (dimers, trimers, etc.) as the space dimension becomes large. Finally, we provide accurate analytical estimates of the pair connectedness function and blocking function at their contact values for any d as a function of density.

摘要

在本系列的第一篇论文中[S. Torquato, J. Chem. Phys. 136, 054106 (2012)],我们得到了关于重叠超粒子在 d 维欧几里得空间 R(d)中连续渗流的分析结果,包括渗流阈值的下界。在本研究中,我们提供了某些簇统计量的额外分析结果,例如 k-mer 的浓度和相关量,并获得了渗流阈值 η(c)的上界。我们利用第一篇论文中得到的最紧下界来制定一种有效的模拟方法,称为重缩放粒子算法,以在迄今为止无法达到的精度下跨多个空间维度估计连续渗流特性。这种模拟程序被应用于计算重叠超球体和定向超正方体的阈值 η(c)和相关的每个粒子的平均重叠数 N(c),范围为 3 ≤ d ≤ 11。这些模拟结果与这些渗流特性的相应上界和下界进行了比较。我们发现,随着空间维度的增加,边界相互收敛,但下界为 η(c)和 N(c)提供了一个极好的估计,即使对于相对较低的维度也是如此。我们证实了本系列第一篇论文中的一个预测,即低维渗流特性编码了高维信息。我们还表明,随着空间维度的增大,单体的浓度在高于二阶的团簇(二聚体、三聚体等)的浓度中占主导地位。最后,我们提供了任何 d 作为密度函数的对连通函数和阻塞函数在其接触值处的精确解析估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验