Neuroimaging Laboratory, Santa Lucia Foundation, via Ardeatina, 306, 00179, Rome, Italy.
Neuron. 2012 Aug 23;75(4):725-37. doi: 10.1016/j.neuron.2012.07.019.
Learning the timing of rapidly changing sensory events is crucial to construct a reliable representation of the environment and to efficiently control behavior. The neurophysiological mechanisms underlying the learning of time are unknown. We used functional and structural magnetic resonance imaging to investigate neurophysiological changes and individual brain differences underlying the learning of time in the millisecond range. We found that the representation of a trained visual temporal interval was associated with functional and structural changes in a sensory-motor network including occipital, parietal, and insular cortices, plus the cerebellum. We show that both types of neurophysiological changes correlated with changes of performance accuracy and that activity and gray-matter volume of sensorimotor cortices predicted individual learning abilities. These findings represent neurophysiological evidence of functional and structural plasticity associated with the learning of time in humans and highlight the role of sensory-motor circuits in the perceptual representation of time in the millisecond range.
学习快速变化的感觉事件的时间是构建环境可靠表示和有效控制行为的关键。学习时间的神经生理机制尚不清楚。我们使用功能和结构磁共振成像来研究毫秒范围内学习时间的神经生理变化和个体大脑差异。我们发现,经过训练的视觉时间间隔的表示与包括枕叶、顶叶和脑岛皮层以及小脑在内的感觉运动网络中的功能和结构变化有关。我们表明,这两种类型的神经生理变化都与性能准确性的变化相关,并且感觉运动皮层的活动和灰质体积可以预测个体的学习能力。这些发现代表了与人类学习时间相关的功能和结构可塑性的神经生理学证据,并强调了感觉运动回路在毫秒范围内时间知觉表示中的作用。