Suppr超能文献

贝叶斯区间定时模型中的时间背景:最新进展和未来方向。

The temporal context in bayesian models of interval timing: Recent advances and future directions.

机构信息

Department of Psychology.

出版信息

Behav Neurosci. 2022 Oct;136(5):364-373. doi: 10.1037/bne0000513. Epub 2022 Jun 23.

Abstract

Sensory perception, motor control, and cognition necessitate reliable timing in the range of milliseconds to seconds, which implies the existence of a highly accurate timing system. Yet, partly owing to the fact that temporal processing is modulated by contextual factors, perceived time is not isomorphic to physical time. Temporal estimates exhibit regression to the mean of an interval distribution () and are also affected by preceding trials (). Recent Bayesian models of interval timing have provided important insights regarding these observations, but questions remain as to how exposure to past intervals shapes perceived time. In this article, we provide a brief overview of Bayesian models of interval timing and their contribution to current understanding of context effects. We then proceed to highlight recent developments in the field concerning precision weighting of Bayesian evidence in both healthy timing and disease and the neurophysiological and neurochemical signatures of timing prediction errors. We further aim to bring attention to current outstanding questions for Bayesian models of interval timing, such as the likelihood conceptualization. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

感觉知觉、运动控制和认知需要在毫秒到秒的范围内进行可靠的计时,这意味着存在一个高度精确的计时系统。然而,部分由于时间处理受到上下文因素的调制,感知时间与物理时间并不完全相同。时间估计表现出向区间分布()均值的回归,并且还受到前一个试验()的影响。最近关于区间计时的贝叶斯模型为这些观察结果提供了重要的见解,但仍存在一些问题,即过去的区间如何影响感知时间。在本文中,我们简要概述了区间计时的贝叶斯模型及其对当前理解上下文效应的贡献。然后,我们重点介绍了该领域最近的发展,包括健康计时和疾病中的贝叶斯证据的精度加权,以及时间预测误差的神经生理学和神经化学特征。我们进一步旨在引起人们对区间计时的贝叶斯模型当前未解决的问题的关注,例如似然概念化。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/9552499/4e58378a6adf/bne_136_5_364_fig1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验