Suppr超能文献

全外显子/基因组测序发现的医学应用挑战。

Challenges in medical applications of whole exome/genome sequencing discoveries.

机构信息

Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center and Texas Heart Institute, Houston, TX 77030, USA.

出版信息

Trends Cardiovasc Med. 2012 Nov;22(8):219-23. doi: 10.1016/j.tcm.2012.08.001. Epub 2012 Aug 24.

Abstract

Despite the well-documented influence of genetics on susceptibility to cardiovascular diseases, delineation of the full spectrum of the risk alleles had to await the development of modern next-generation sequencing technologies. The techniques provide unbiased approaches for identification of the DNA sequence variants (DSVs) in the entire genome (whole genome sequencing [WGS]) or the protein-coding exons (whole exome sequencing [WES]). Each genome contains approximately 4 million DSVs and each exome approximately 13,000 single nucleotide variants. The challenge facing researchers and clinicians alike is to decipher the biological and clinical significance of these variants and harness the information for the practice of medicine. The common DSVs typically exert modest effect sizes, as evidenced by the results of genome-wide association studies, and hence have modest or negligible clinical implications. The focus is on the rare variants with large effect sizes, which are expected to have stronger clinical implications, as in single gene disorders with Mendelian patterns of inheritance. However, the clinical implications of the rare variants for common complex cardiovascular diseases remain to be established. The most important contribution of WES or WGS is in delineation of the novel molecular pathways involved in the pathogenesis of the phenotype, which would be expected to provide for preventive and therapeutic opportunities.

摘要

尽管遗传学对心血管疾病易感性的影响已有充分的记录,但要确定风险等位基因的全貌,必须等待现代下一代测序技术的发展。这些技术为鉴定整个基因组(全基因组测序[WGS])或蛋白质编码外显子(全外显子组测序[WES])中的 DNA 序列变异(DSV)提供了无偏的方法。每个基因组包含大约 400 万个 DSV,每个外显子大约有 13000 个单核苷酸变异。研究人员和临床医生面临的挑战是解读这些变异的生物学和临床意义,并利用这些信息进行医学实践。常见的 DSV 通常具有适度的效应大小,这可以从全基因组关联研究的结果中得到证明,因此具有适度或可忽略不计的临床意义。研究的重点是具有较大效应大小的罕见变异,这些变异预计具有更强的临床意义,就像具有孟德尔遗传模式的单基因疾病一样。然而,罕见变异对常见复杂心血管疾病的临床意义仍有待确定。WES 或 WGS 的最重要贡献在于描绘参与表型发病机制的新分子途径,这有望为预防和治疗提供机会。

相似文献

1
Challenges in medical applications of whole exome/genome sequencing discoveries.全外显子/基因组测序发现的医学应用挑战。
Trends Cardiovasc Med. 2012 Nov;22(8):219-23. doi: 10.1016/j.tcm.2012.08.001. Epub 2012 Aug 24.
2
Molecular genetic studies of complex phenotypes.复杂表型的分子遗传学研究。
Transl Res. 2012 Feb;159(2):64-79. doi: 10.1016/j.trsl.2011.08.001. Epub 2011 Aug 31.
3
Medical DNA sequencing.医学 DNA 测序。
Curr Opin Cardiol. 2011 May;26(3):175-80. doi: 10.1097/HCO.0b013e3283459857.
4
Sequencing your genome: what does it mean?对您的基因组进行测序:这意味着什么?
Methodist Debakey Cardiovasc J. 2014 Jan-Mar;10(1):3-6. doi: 10.14797/mdcj-10-1-3.
6
The challenge for the next generation of medical geneticists.下一代医学遗传学家面临的挑战。
Hum Mutat. 2014 Aug;35(8):909-11. doi: 10.1002/humu.22592. Epub 2014 Jun 28.
7
What can exome sequencing do for you?外显子组测序能为您做什么?
J Med Genet. 2011 Sep;48(9):580-9. doi: 10.1136/jmedgenet-2011-100223. Epub 2011 Jul 5.

引用本文的文献

1
Evolutionary Origins of Metabolic Reprogramming in Cancer.癌症代谢重编程的进化起源。
Int J Mol Sci. 2022 Oct 11;23(20):12063. doi: 10.3390/ijms232012063.
7
X-Linked Candidate Genes for a Ciliopathy-Like Disorder.一种类纤毛病相关疾病的X连锁候选基因。
Mol Syndromol. 2016 Apr;7(1):37-42. doi: 10.1159/000444666. Epub 2016 Mar 16.

本文引用的文献

5
The predictive capacity of personal genome sequencing.个人基因组测序的预测能力。
Sci Transl Med. 2012 May 9;4(133):133ra58. doi: 10.1126/scitranslmed.3003380. Epub 2012 Apr 2.
6
Elements of 'missing heritability'.“遗传缺失”的要素。
Curr Opin Cardiol. 2012 May;27(3):197-201. doi: 10.1097/HCO.0b013e328352707d.
8
Truncations of titin causing dilated cardiomyopathy.导致扩张型心肌病的肌联蛋白截短。
N Engl J Med. 2012 Feb 16;366(7):619-28. doi: 10.1056/NEJMoa1110186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验