Suppr超能文献

PAS 结构域残基和辅基参与铜绿假单胞菌生物膜中 BdlA 依赖性分散反应。

PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms.

机构信息

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA.

出版信息

J Bacteriol. 2012 Nov;194(21):5817-28. doi: 10.1128/JB.00780-12. Epub 2012 Aug 24.

Abstract

Biofilm dispersion by Pseudomonas aeruginosa in response to environmental cues is dependent on the cytoplasmic BdlA protein harboring two sensory PAS domains and a chemoreceptor domain, TarH. The closest known and previously characterized BdlA homolog is the flavin adenine dinucleotide (FAD)-binding Aer, the redox potential sensor and aerotaxis transducer in Escherichia coli. Here, we made use of alanine replacement mutagenesis of the BdlA PAS domain residues previously demonstrated to be essential for aerotaxis in Aer to determine whether BdlA is a potential sensory protein. Five substitutions (D14A, N23A, W60A, I109A, and W182A) resulted in a null phenotype for dispersion. One protein, the BdlA protein with the G31A mutation (BdlA-G31A), transmitted a constant signal-on bias as it rendered P. aeruginosa biofilms hyperdispersive. The hyperdispersive phenotype correlated with increased interaction of BdlA-G31A with the phosphodiesterase DipA under biofilm growth conditions, resulting in increased phosphodiesterase activity and reduced biofilm biomass accumulation. We furthermore demonstrate that BdlA is a heme-binding protein. None of the BdlA protein variants analyzed led to a loss of the heme prosthetic group. The N-terminal PASa domain was identified as the heme-binding domain of BdlA, with BdlA-dependent nutrient-induced dispersion requiring the PASa domain. The findings suggest that BdlA plays a role in intracellular sensing of dispersion-inducing conditions and together with DipA forms a regulatory network that modulates an intracellular cyclic d-GMP (c-di-GMP) pool to enable dispersion.

摘要

铜绿假单胞菌对环境信号的生物膜分散响应依赖于含有两个感应 PAS 结构域和一个化学感受器结构域的细胞质 BdlA 蛋白 TarH。目前已知的最接近的 BdlA 同源物是黄素腺嘌呤二核苷酸(FAD)结合 Aer,它是大肠杆菌中的氧化还原电位传感器和趋氧转导蛋白。在这里,我们利用先前在 Aer 中对 Aer 趋氧性至关重要的 BdlA PAS 结构域残基的丙氨酸替换突变,来确定 BdlA 是否是一种潜在的感觉蛋白。五个取代(D14A、N23A、W60A、I109A 和 W182A)导致分散的表型缺失。一种蛋白质,即 BdlA 蛋白中的 G31A 突变(BdlA-G31A),由于它使铜绿假单胞菌生物膜超分散,因此表现出恒定的信号开启偏差。超分散表型与 BdlA-G31A 与磷酸二酯酶 DipA 在生物膜生长条件下的相互作用增加有关,导致磷酸二酯酶活性增加和生物膜生物量积累减少。我们还证明 BdlA 是一种血红素结合蛋白。分析的 BdlA 蛋白变体都没有导致血红素辅基丢失。N 端 PASa 结构域被鉴定为 BdlA 的血红素结合结构域,BdlA 依赖性营养诱导的分散需要 PASa 结构域。研究结果表明,BdlA 在细胞内感应分散诱导条件中发挥作用,与 DipA 一起形成一个调节网络,调节细胞内循环二鸟苷酸(c-di-GMP)池,从而实现分散。

相似文献

1
PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms.
J Bacteriol. 2012 Nov;194(21):5817-28. doi: 10.1128/JB.00780-12. Epub 2012 Aug 24.
2
BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa.
J Bacteriol. 2006 Nov;188(21):7335-43. doi: 10.1128/JB.00599-06.
3
Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16690-5. doi: 10.1073/pnas.1207832109. Epub 2012 Sep 24.
4
The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Biofilms.
mSphere. 2022 Dec 21;7(6):e0050522. doi: 10.1128/msphere.00505-22. Epub 2022 Nov 14.
5
Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa.
Mol Microbiol. 2014 Nov;94(4):771-93. doi: 10.1111/mmi.12802. Epub 2014 Oct 12.
6
The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.
J Bacteriol. 2015 Jan 1;197(1):174-87. doi: 10.1128/JB.02244-14. Epub 2014 Oct 20.
7
The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion.
J Bacteriol. 2012 Jun;194(11):2904-15. doi: 10.1128/JB.05346-11. Epub 2012 Apr 6.
8
Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E209-18. doi: 10.1073/pnas.1523148113. Epub 2015 Dec 28.
9
BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa.
PLoS Pathog. 2014 Jun 5;10(6):e1004168. doi: 10.1371/journal.ppat.1004168. eCollection 2014 Jun.
10
Sodium houttuyfonate in vitro inhibits biofilm dispersion and expression of bdlA in Pseudomonas aeruginosa.
Mol Biol Rep. 2019 Feb;46(1):471-477. doi: 10.1007/s11033-018-4497-9. Epub 2018 Dec 3.

引用本文的文献

1
Absence of biofilm adhesin proteins changes surface attachment and cell strategy for Hildenborough.
J Bacteriol. 2025 Jan 31;207(1):e0037924. doi: 10.1128/jb.00379-24. Epub 2024 Dec 31.
2
Distinct transcriptome and traits of freshly dispersed cells.
mSphere. 2024 Dec 19;9(12):e0088424. doi: 10.1128/msphere.00884-24. Epub 2024 Nov 27.
3
Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19.
World J Microbiol Biotechnol. 2024 Oct 14;40(11):347. doi: 10.1007/s11274-024-04153-1.
4
Origin and functional diversification of PAS domain, a ubiquitous intracellular sensor.
Sci Adv. 2023 Sep;9(35):eadi4517. doi: 10.1126/sciadv.adi4517. Epub 2023 Aug 30.
6
PAS Domain-Containing Chemoreceptors Influence the Signal Sensing and Intestinal Colonization of .
Genes (Basel). 2022 Nov 27;13(12):2224. doi: 10.3390/genes13122224.
7
The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Biofilms.
mSphere. 2022 Dec 21;7(6):e0050522. doi: 10.1128/msphere.00505-22. Epub 2022 Nov 14.
8
Flagella, Chemotaxis and Surface Sensing.
Adv Exp Med Biol. 2022;1386:185-221. doi: 10.1007/978-3-031-08491-1_7.
9
Controlling Biofilm Development Through Cyclic di-GMP Signaling.
Adv Exp Med Biol. 2022;1386:69-94. doi: 10.1007/978-3-031-08491-1_3.
10
A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones.
Environ Microbiol. 2022 Aug;24(8):3580-3597. doi: 10.1111/1462-2920.15920. Epub 2022 Feb 1.

本文引用的文献

1
The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion.
J Bacteriol. 2012 Jun;194(11):2904-15. doi: 10.1128/JB.05346-11. Epub 2012 Apr 6.
3
PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2235-40. doi: 10.1073/pnas.0910055107. Epub 2010 Jan 19.
4
A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development.
PLoS Pathog. 2009 Nov;5(11):e1000668. doi: 10.1371/journal.ppat.1000668. Epub 2009 Nov 20.
5
Structure and signaling mechanism of Per-ARNT-Sim domains.
Structure. 2009 Oct 14;17(10):1282-94. doi: 10.1016/j.str.2009.08.011.
7
Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes.
Biotechnol Bioeng. 1991 Jan 5;37(1):17-25. doi: 10.1002/bit.260370105.
8
NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR.
J Mol Biol. 2008 May 16;378(5):1002-15. doi: 10.1016/j.jmb.2008.03.013. Epub 2008 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验