Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy.
Plant Physiol. 2012 Oct;160(2):965-77. doi: 10.1104/pp.112.203455. Epub 2012 Aug 24.
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
我们对葡萄(Vitis vinifera)VvPIP2;4N(质膜内在蛋白)水通道蛋白基因进行了功能表征。VvPIP2;4N 在非洲爪蟾卵母细胞中的表达使卵母细胞的肿胀率增加了 54 倍。Northern blot 和定量逆转录聚合酶链反应分析表明,VvPIP2;4N 是根中表达最丰富的 PIP2 基因。原位杂交证实其在皮层薄壁组织和内皮层附近定位于根。我们随后在葡萄 'Brachetto' 中组成型过表达 VvPIP2;4N,并在所得的转基因植物中分析了(1)内源性和转基因 VvPIP2;4N 以及其他四个水通道蛋白的表达,(2)整株植物、根和叶的生态生理学参数,以及(3)叶中脱落酸的含量。在根和叶中,转基因 VvPIP2;4N 的表达既没有抑制内源性基因的表达,也没有抑制其他 PIP 水通道蛋白的表达。在水分充足的条件下,转基因植物表现出更高的气孔导度、气体交换和地上部生长。VvPIP2;4N(内源性+转基因)的表达水平与根水力阻力呈负相关。总植物水力阻力的叶片组分较低,不受 VvPIP2;4N 过表达的影响。在水分胁迫下,VvPIP2;4N 的过表达诱导叶片脱落酸含量激增,气孔导度和叶片气体交换减少。我们的结果表明,水通道蛋白介导的根水力特性的改变在调控水分充足的葡萄植株的水流中起着重要作用,而在干旱条件下作用较小,可能是因为其他信号,如脱落酸,接管了对水流的控制。