Suppr超能文献

解析 16S rRNA 甲基转移酶 RsmE(m³U1498)的催化机制:晶体和溶液结构研究

Insights into the catalytic mechanism of 16S rRNA methyltransferase RsmE (m³U1498) from crystal and solution structures.

机构信息

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Beijing 100049, China.

出版信息

J Mol Biol. 2012 Nov 2;423(4):576-89. doi: 10.1016/j.jmb.2012.08.016. Epub 2012 Aug 25.

Abstract

RsmE is the founding member of a new RNA methyltransferase (MTase) family responsible for methylation of U1498 in 16S ribosomal RNA in Escherichia coli. It is well conserved across bacteria and plants and may play an important role in ribosomal intersubunit communication. The crystal structure in monomer showed that it consists of two distinct but structurally related domains: the PUA (pseudouridine synthases and archaeosine-specific transglycosylases)-like RNA recognition and binding domain and the conserved MTase domain with a deep trefoil knot. Analysis of small-angle X-ray scattering data revealed that RsmE forms a flexible dimeric conformation that may be essential for substrate binding. The S-adenosyl-l-methionine (AdoMet)-binding characteristic determined by isothermal titration calorimetry suggested that there is only one AdoMet molecule bound in the subunit of the homodimer. In vitro methylation assay of the mutants based on the RsmE-AdoMet-uridylic acid complex model showed key residues involved in substrate binding and catalysis. Comprehensive comparisons of RsmE with closely related MTases, combined with the biochemical experiments, indicated that the MTase domain of one subunit in dimeric RsmE is responsible for binding of one AdoMet molecule and catalytic process while the PUA-like domain in the other subunit is mainly responsible for recognition of one substrate molecule (the ribosomal RNA fragment and ribosomal protein complex). The methylation process is required by collaboration of both subunits, and dimerization is functionally critical for catalysis. In general, our study provides new information on the structure-function relationship of RsmE and thereby suggests a novel catalytic mechanism.

摘要

RsmE 是一个新的 RNA 甲基转移酶(MTase)家族的创始成员,负责大肠杆菌 16S 核糖体 RNA 中 U1498 的甲基化。它在细菌和植物中高度保守,可能在核糖体亚基间通讯中发挥重要作用。单体的晶体结构表明,它由两个不同但结构相关的结构域组成:PUA(假尿嘧啶合酶和 archaeosine 特异性转糖基酶)样 RNA 识别和结合结构域和保守的 MTase 结构域,具有深三叶结。小角度 X 射线散射数据分析表明,RsmE 形成一种灵活的二聚体构象,这可能对底物结合至关重要。等温滴定量热法确定的 S-腺苷甲硫氨酸(AdoMet)结合特征表明,同二聚体亚基中仅结合有一个 AdoMet 分子。基于 RsmE-AdoMet-尿苷酸复合物模型的突变体体外甲基化测定表明,关键残基参与底物结合和催化。与密切相关的 MTases 的综合比较,结合生化实验,表明二聚体 RsmE 中一个亚基的 MTase 结构域负责结合一个 AdoMet 分子和催化过程,而另一个亚基中的 PUA 样结构域主要负责识别一个底物分子(核糖体 RNA 片段和核糖体蛋白复合物)。甲基化过程需要两个亚基的协作,二聚化对催化功能至关重要。总的来说,我们的研究为 RsmE 的结构-功能关系提供了新的信息,并提出了一种新的催化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验