Dutton Stacey B, Makinson Christopher D, Papale Ligia A, Shankar Anupama, Balakrishnan Bindu, Nakazawa Kazu, Escayg Andrew
Department of Human Genetics, Emory University, Atlanta, GA, 30022, USA.
Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, Bethesda, MD, USA.
Neurobiol Dis. 2013 Jan;49:211-20. doi: 10.1016/j.nbd.2012.08.012. Epub 2012 Aug 25.
Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC α-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2α immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.
电压门控钠通道(VGSCs)对于电可兴奋细胞动作电位的产生和传播至关重要。编码Nav1.1 VGSC α亚基的SCN1A中的显性突变是多种癫痫形式的基础,包括德雷维特综合征(DS)和伴有热性惊厥附加症的遗传性癫痫(GEFS +)。对DS和GEFS +小鼠模型的电生理分析得出了这样的假设,即SCN1A突变会降低抑制性皮质和海马中间神经元的兴奋性。为了更直接地研究抑制性中间神经元和兴奋性锥体细胞对SCN1A源性癫痫的相对贡献,我们首先使用荧光免疫组织化学比较了P22小鼠抑制性小白蛋白(PV)中间神经元和兴奋性神经元中Nav1.1的表达。在海马体和新皮质中,69%的Nav1.1免疫反应性神经元对PV也呈阳性。相比之下,分别在海马体和新皮质中发现,13%和5%的Nav1.1阳性细胞与通过CaMK2α免疫反应性鉴定的兴奋性细胞共定位。接下来,我们通过将携带floxed Scn1a等位基因的杂合小鼠分别与Ppp1r2-Cre或EMX1-Cre转基因品系杂交,来降低中间神经元(主要是PV中间神经元)或兴奋性细胞中Scn1a的表达。新皮质和海马体中间神经元中一个Scn1a等位基因的失活足以降低对氟烷和热诱导癫痫发作的阈值,而在兴奋性细胞中失活后阈值未改变。中间神经元Scn1a表达的降低也导致了自发性癫痫发作的产生。这些发现为PV中间神经元在SCN1A源性癫痫发病机制中的重要作用提供了直接证据。