Suppr超能文献

利用 Cariogram 评估印度某市 12 岁学童的龋齿风险状况。

Caries risk profile of 12 year old school children in an Indian city using Cariogram.

机构信息

Dept of Public Health Dentistry, KLE VK Institute of dental sciences, Belgaum, Karnataka India.

出版信息

Med Oral Patol Oral Cir Bucal. 2012 Nov 1;17(6):e1054-61. doi: 10.4317/medoral.17880.

Abstract

OBJECTIVES

The present study was conducted with an aim to assess the caries profile of 12 year old Indian children using Cariogram.

STUDY DESIGN

Hundred children were interviewed to record any illness, oral hygiene practices and fluoride exposure after obtaining a three day diet diary. Examination was done to record plaque and dental caries status. Stimulated saliva was collected and salivary flow rate, salivary buffering capacity, Streptococcus mutans and Lactobacillus were assessed. The information obtained was scored and Cariogram was created. Differences between mean decayed, missing and filled teeth (DMFT) and Cariogram risk groups were assessed using ANOVA. Spearman Correlation coefficients were used to explore correlation among Cariogram scores and individual variables.

RESULTS

It was found that 21, 45, 21 and 13 children had 0-20%, 21-40%, 41-60% and 61-100% chance of avoiding caries respectively in future. Significant correlation was observed between cariogram score and DMFT, diet content, diet frequency, plaque scores, Streptococcus mutans counts and fluoride programme.

CONCLUSIONS

Cariogram model can identify the caries-related factors that could be the reasons for the estimated future caries risk, and therefore help the dentist to plan appropriate preventive measures.

摘要

目的

本研究旨在使用 Cariogram 评估 12 岁印度儿童的龋齿状况。

研究设计

对 100 名儿童进行访谈,以记录任何疾病、口腔卫生习惯和氟化物暴露情况,同时获取三天的饮食日记。检查记录了菌斑和龋齿状况。收集刺激唾液,评估唾液流速、唾液缓冲能力、变形链球菌和乳酸杆菌。将获得的信息进行评分并创建 Cariogram。使用方差分析评估平均龋齿、缺失和补牙(DMFT)和 Cariogram 风险组之间的差异。使用 Spearman 相关系数探索 Cariogram 评分与个体变量之间的相关性。

结果

发现 21、45、21 和 13 名儿童在未来分别有 0-20%、21-40%、41-60%和 61-100%的机会避免龋齿。Cariogram 评分与 DMFT、饮食内容、饮食频率、菌斑评分、变形链球菌计数和氟化物计划之间存在显著相关性。

结论

Cariogram 模型可以识别与龋齿相关的因素,这些因素可能是估计未来龋齿风险的原因,因此有助于牙医制定适当的预防措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d7f/3505702/51cc33ac0856/medoral-17-e1054-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验