Christiansen F B
Department of Ecology and Genetics, University of Aarhus, Denmark.
J Math Biol. 1990;29(2):99-129. doi: 10.1007/BF00168174.
Selection due to differential viability is studied in an n-locus two-allele model using a set indexation that allows the simplicity of the one-locus two-allele model to be carried to multi-locus models. The existence condition is analyzed for polymorphic equilibria with linkage equilibrium: Robbins' equilibria. The local stability condition is given for the Robbins' equilibria on the boundaries in the generalized non-epistatic selection regimes of Karlin and Liberman (1979). These generalized non-epistatic regimes include the additive selection model, the multiplicative selection model and the multiplicative interaction model, and their symmetric versions cover all the symmetric viability models.
在一个n位点双等位基因模型中,使用一种集合索引法研究了因不同生存能力导致的选择,该索引法能将单位点双等位基因模型的简单性推广到多位点模型。分析了具有连锁平衡的多态平衡(罗宾斯平衡)的存在条件。给出了在卡林和利伯曼(1979年)广义非上位性选择机制下边界上罗宾斯平衡的局部稳定性条件。这些广义非上位性机制包括加性选择模型、乘性选择模型和乘性相互作用模型,它们的对称版本涵盖了所有对称生存能力模型。