Suppr超能文献

建立一个针对气候敏感疾病风险的早期预警系统,重点关注巴西东南部的登革热疫情。

The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil.

机构信息

Institut Català de Ciències del Clima, Barcelona, Spain.

出版信息

Stat Med. 2013 Feb 28;32(5):864-83. doi: 10.1002/sim.5549. Epub 2012 Aug 24.

Abstract

Previous studies demonstrate statistically significant associations between disease and climate variations, highlighting the potential for developing climate-based epidemic early warning systems. However, limitations include failure to allow for non-climatic confounding factors, limited geographical/temporal resolution, or lack of evaluation of predictive validity. Here, we consider such issues for dengue in Southeast Brazil using a spatio-temporal generalised linear mixed model with parameters estimated in a Bayesian framework, allowing posterior predictive distributions to be derived in time and space. This paper builds upon a preliminary study by Lowe et al. but uses extended, more recent data and a refined model formulation, which, amongst other adjustments, incorporates past dengue risk to improve model predictions. For the first time, a thorough evaluation and validation of model performance is conducted using out-of-sample predictions and demonstrates considerable improvement over a model that mirrors current surveillance practice. Using the model, we can issue probabilistic dengue early warnings for pre-defined 'alert' thresholds. With the use of the criterion 'greater than a 50% chance of exceeding 300 cases per 100,000 inhabitants', there would have been successful epidemic alerts issued for 81% of the 54 regions that experienced epidemic dengue incidence rates in February-April 2008, with a corresponding false alarm rate of 25%. We propose a novel visualisation technique to map ternary probabilistic forecasts of dengue risk. This technique allows decision makers to identify areas where the model predicts with certainty a particular dengue risk category, to effectively target limited resources to those districts most at risk for a given season.

摘要

先前的研究表明疾病与气候变异之间存在统计学上的显著关联,这突显了开发基于气候的传染病预警系统的潜力。然而,这些研究存在一些局限性,包括未能考虑非气候混杂因素、地理/时间分辨率有限,或者缺乏预测有效性的评估。在这里,我们使用具有贝叶斯框架中参数估计的时空广义线性混合模型来考虑巴西东南部登革热的这些问题,从而可以在时间和空间上推导出后验预测分布。本文是在 Lowe 等人的初步研究基础上进行的,但使用了扩展的、更近期的数据和改进的模型公式,其中包括利用过去的登革热风险来改进模型预测。这是首次对模型性能进行全面评估和验证,使用了样本外预测,并证明了与反映当前监测实践的模型相比有了相当大的改进。我们可以使用该模型针对预定义的“警报”阈值发布概率性登革热预警。使用“超过每 10 万居民 300 例的可能性大于 50%”的标准,在 2008 年 2 月至 4 月经历流行登革热发病率的 54 个地区中,有 81%成功发布了流行预警,相应的误报率为 25%。我们提出了一种新的可视化技术,用于绘制登革热风险的三元概率预测图。该技术使决策者能够识别出模型预测特定登革热风险类别的确定性区域,以便将有限的资源有效地针对特定季节风险最高的地区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验