Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
Centre for Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
BMC Infect Dis. 2023 Oct 20;23(1):708. doi: 10.1186/s12879-023-08717-8.
Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used.
We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.).
We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures.
Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.
伊蚊传播的疾病是全球不断扩大的威胁,但监测方面的差距使得全面和可比的风险评估具有挑战性。地质统计学模型结合了来自多个地点的数据,并利用与环境和社会经济因素的联系来制作预测风险图。在这里,我们系统地回顾了过去从局部到全球尺度对不同伊蚊传播的虫媒病毒进行风险制图的方法,确定了所使用的数据类型、协变量和建模方法的差异和相似之处。
我们在没有地理或日期限制的情况下,在线数据库中搜索了针对登革热、寨卡病毒、基孔肯雅热和黄热病的预测性风险制图研究。我们纳入了需要对其模型进行参数化或拟合实际流行病学数据,并对某些人群层面病毒传播风险(例如发病率、发生率、适宜性等)的新空间位置进行预测的研究。
我们发现,所有流行地区和虫媒病毒疾病的虫媒病毒风险制图研究数量不断增加,2002 年至 2022 年共发表了 176 篇论文,其中大部分增加发生在重大疫情之后。出现了三种主要的应用案例:(i)全球地图以确定传播的极限,估计负担并评估未来全球变化的影响,(ii)用于预测国家间重大疫情传播的区域模型,以及(iii)利用本地数据集更好地了解传播动态以改善疫情发现和应对的国家和次国家模型。温度和降雨量是最受欢迎的协变量选择(分别包含在 50%和 40%的研究中),但诸如人类流动性等变量的使用也在逐渐增加。令人惊讶的是,很少有研究(22%,31/144)从不同领域(如气候、社会人口、生态等)稳健地测试协变量组合,只有 49%的研究通过样本外验证程序评估预测性能。
在这里,我们表明,针对不同虫媒病毒进行风险制图的方法已经多样化,以应对不断变化的应用案例、流行病学和数据可用性。我们确定了不同虫媒病毒疾病之间制图方法的关键差异,讨论了未来的研究需求,并为未来的虫媒病毒制图提出了具体建议。