Suppr超能文献

使用现实的变性和天然状态集合研究折叠过程中蛋白质主链熵损失的上下文和力场依赖性。

Context and force field dependence of the loss of protein backbone entropy upon folding using realistic denatured and native state ensembles.

机构信息

Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.

出版信息

J Am Chem Soc. 2012 Sep 26;134(38):15929-36. doi: 10.1021/ja3064028. Epub 2012 Sep 14.

Abstract

The loss of conformational entropy is the largest unfavorable quantity affecting a protein's stability. We calculate the reduction in the number of backbone conformations upon folding using the distribution of backbone dihedral angles (ϕ,ψ) obtained from an experimentally validated denatured state model, along with all-atom simulations for both the denatured and native states. The average loss of entropy per residue is TΔS(BB)(U-N) = 0.7, 0.9, or 1.1 kcal·mol(-1) at T = 298 K, depending on the force field used, with a 0.6 kcal·mol(-1) dispersion across the sequence. The average equates to a decrease of a factor of 3-7 in the number of conformations available per residue (f = Ω(Denatured)/Ω(Native)) or to a total of f(tot) = 3(n)-7(n) for an n residue protein. Our value is smaller than most previous estimates where f = 7-20, that is, our computed TΔS(BB)(U-N) is smaller by 10-100 kcal mol(-1) for n = 100. The differences emerge from our use of realistic native and denatured state ensembles as well as from the inclusion of accurate local sequence preferences, neighbor effects, and correlated motions (vibrations), in contrast to some previous studies that invoke gross assumptions about the entropy in either or both states. We find that the loss of entropy primarily depends on the local environment and less on properties of the native state, with the exception of α-helical residues in some force fields.

摘要

构象熵的损失是影响蛋白质稳定性的最大不利因素。我们使用从实验验证的变性状态模型获得的骨架二面角(ϕ,ψ)分布以及变性状态和天然状态的全原子模拟来计算折叠时骨架构象数目的减少。在 T = 298 K 时,每个残基的平均熵损失为 TΔS(BB)(U-N) = 0.7、0.9 或 1.1 kcal·mol(-1),具体取决于所使用的力场,序列中存在 0.6 kcal·mol(-1)的离散性。平均值相当于每个残基可用构象数目的减少因子为 3-7(f = Ω(Denatured)/Ω(Native)),或者对于 n 残基蛋白质总共减少 f(tot) = 3(n)-7(n)。我们的价值小于大多数先前的估计值,其中 f = 7-20,也就是说,对于 n = 100,我们计算的 TΔS(BB)(U-N) 小 10-100 kcal mol(-1)。差异来自我们使用现实的天然状态和变性状态集合以及包括准确的局部序列偏好、邻域效应和相关运动(振动),而不是一些先前的研究对任一状态或两个状态的熵进行了粗略的假设。我们发现熵的损失主要取决于局部环境,而较少取决于天然状态的性质,除了某些力场中的α-螺旋残基。

相似文献

2
Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15396-401. doi: 10.1073/pnas.1407768111. Epub 2014 Oct 13.
4
The nature of the free energy barriers to two-state folding.
Proteins. 2004 Oct 1;57(1):142-52. doi: 10.1002/prot.20172.
5
6
Conformational entropy of alanine versus glycine in protein denatured states.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2661-6. doi: 10.1073/pnas.0611182104. Epub 2007 Feb 16.
7
Thermodynamics of protein denatured states.
Mol Biosyst. 2007 Feb;3(2):88-99. doi: 10.1039/b611895j. Epub 2006 Nov 7.
8
The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy.
J Mol Biol. 2002 Sep 20;322(3):645-52. doi: 10.1016/s0022-2836(02)00801-x.
10
Reframing the Protein Folding Problem: Entropy as Organizer.
Biochemistry. 2021 Dec 14;60(49):3753-3761. doi: 10.1021/acs.biochem.1c00687. Epub 2021 Dec 2.

引用本文的文献

3
Short peptides as predictors for the structure of polyarginine sequences in disordered proteins.
Biophys J. 2021 Feb 16;120(4):662-676. doi: 10.1016/j.bpj.2020.12.026. Epub 2021 Jan 14.
4
Glycine in Water Favors the Polyproline II State.
Biomolecules. 2020 Jul 29;10(8):1121. doi: 10.3390/biom10081121.
5
Anticooperative Nearest-Neighbor Interactions between Residues in Unfolded Peptides and Proteins.
Biophys J. 2018 Mar 13;114(5):1046-1057. doi: 10.1016/j.bpj.2018.01.022.
6
Simultaneous Determination of Two Subdomain Folding Rates Using the "Transfer-Quench" Method.
Biophys J. 2017 May 9;112(9):1786-1796. doi: 10.1016/j.bpj.2017.01.037.
7
Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2241-2246. doi: 10.1073/pnas.1609579114. Epub 2017 Feb 13.
8
On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.
Proteins. 2015 May;83(5):922-30. doi: 10.1002/prot.24789. Epub 2015 Mar 25.
9
Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15396-401. doi: 10.1073/pnas.1407768111. Epub 2014 Oct 13.
10
Local order in the unfolded state: conformational biases and nearest neighbor interactions.
Biomolecules. 2014 Jul 24;4(3):725-73. doi: 10.3390/biom4030725.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.
J Chem Theory Comput. 2012 Apr 10;8(4):1409-1414. doi: 10.1021/ct2007814. Epub 2012 Mar 12.
3
Structure and dynamics of an unfolded protein examined by molecular dynamics simulation.
J Am Chem Soc. 2012 Feb 29;134(8):3787-91. doi: 10.1021/ja209931w. Epub 2012 Feb 16.
4
5
How robust are protein folding simulations with respect to force field parameterization?
Biophys J. 2011 May 4;100(9):L47-9. doi: 10.1016/j.bpj.2011.03.051.
6
From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14609-14. doi: 10.1073/pnas.1001743107. Epub 2010 Jul 16.
7
Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39).
J Am Chem Soc. 2010 Feb 10;132(5):1526-8. doi: 10.1021/ja9090353.
8
Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.
J Phys Chem B. 2009 Jul 2;113(26):9004-15. doi: 10.1021/jp901540t.
9
Force field bias in protein folding simulations.
Biophys J. 2009 May 6;96(9):3772-80. doi: 10.1016/j.bpj.2009.02.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验