Suppr超能文献

蛋白质力场是否在不断改进?对524种不同核磁共振测量的系统基准测试。

Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.

作者信息

Beauchamp Kyle A, Lin Yu-Shan, Das Rhiju, Pande Vijay S

机构信息

Biophysics Program, Stanford University, Stanford, CA.

出版信息

J Chem Theory Comput. 2012 Apr 10;8(4):1409-1414. doi: 10.1021/ct2007814. Epub 2012 Mar 12.

Abstract

Recent hardware and software advances have enabled simulation studies of protein systems on biophysically-relevant timescales, often revealing the need for improved force fields. Although early force field development was limited by the lack of direct comparisons between simulation and experiment, recent work from several labs has demonstrated direct calculation of NMR observables from protein simulations. Here we quantitatively evaluate recent molecular dynamics force fields against a suite of 524 chemical shift and J coupling ((3)JH(N)H(α), (3)JH(N)C(β), (3)JH(α)C', (3)JH(N)C', and (3)JH(α)N) measurements on dipeptides, tripeptides, tetra-alanine, and ubiquitin. Of the force fields examined (ff96, ff99, ff03, ff03*, ff03w, ff99sb*, ff99sb-ildn, ff99sb-ildn-phi, ff99sb-ildn-nmr, CHARMM27, OPLS-AA), two force fields (ff99sb-ildn-phi, ff99sb-ildn-nmr) combining recent side chain and backbone torsion modifications achieve high accuracy in our benchmark. For the two optimal force fields, the calculation error is comparable to the uncertainty in the experimental comparison. This observation suggests that extracting additional force field improvements from NMR data may require increased accuracy in J coupling and chemical shift prediction. To further investigate the limitations of current force fields, we also consider conformational populations of dipeptides, which were recently estimated using vibrational spectroscopy.

摘要

近期硬件和软件的进步使得在生物物理相关时间尺度上对蛋白质系统进行模拟研究成为可能,这常常揭示出改进势场的必要性。尽管早期势场的发展受到模拟与实验缺乏直接比较的限制,但几个实验室最近的工作已经证明了从蛋白质模拟中直接计算核磁共振(NMR)可观测量。在这里,我们针对二肽、三肽、四丙氨酸和泛素的524个化学位移和J耦合((3)JH(N)H(α)、(3)JH(N)C(β)、(3)JH(α)C'、(3)JH(N)C'和(3)JH(α)N)测量值,对近期的分子动力学势场进行了定量评估。在所研究的势场(ff96、ff99、ff03、ff03*、ff03w ffbb99sb*、ff99sb-ildn、ff99sb-ildn-phi、ff99sb-ildn-nmr、CHARMM27、OPLS-AA)中,两个结合了近期侧链和主链扭转修正的势场(ff99sb-ildn-phi、ff99sb-ildn-nmr)在我们的基准测试中达到了高精度。对于这两个最优势场,计算误差与实验比较中的不确定性相当。这一观察结果表明,从NMR数据中提取额外的势场改进可能需要提高J耦合和化学位移预测的准确性。为了进一步研究当前势场的局限性,我们还考虑了二肽的构象分布,其最近是通过振动光谱法估计的。

相似文献

1
Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.
J Chem Theory Comput. 2012 Apr 10;8(4):1409-1414. doi: 10.1021/ct2007814. Epub 2012 Mar 12.
2
Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
J Chem Theory Comput. 2012 Aug 14;8(8):2725-2740. doi: 10.1021/ct300323g. Epub 2012 Jun 19.
3
Critical Assessment of Current Force Fields. Short Peptide Test Case.
J Chem Theory Comput. 2013 Jan 8;9(1):441-51. doi: 10.1021/ct300794a. Epub 2012 Dec 14.
5
Improved side-chain torsion potentials for the Amber ff99SB protein force field.
Proteins. 2010 Jun;78(8):1950-8. doi: 10.1002/prot.22711.
8
Toward a predictive understanding of slow methyl group dynamics in proteins.
Biophys J. 2011 Aug 17;101(4):910-5. doi: 10.1016/j.bpj.2011.06.053.
9
Conformational dynamics of HIV-1 protease: a comparative molecular dynamics simulation study with multiple amber force fields.
J Bioinform Comput Biol. 2012 Dec;10(6):1250018. doi: 10.1142/S0219720012500187. Epub 2012 Jul 31.
10
Dynamic properties of force fields.
J Chem Phys. 2015 Feb 28;142(8):084101. doi: 10.1063/1.4909549.

引用本文的文献

1
Structural Implications of Missense Point Mutations in Shwachman-Bodian-Diamond Syndrome Protein (SBDS): A Combined SAXS/MD Investigation.
ACS Omega. 2025 Aug 1;10(31):35103-35118. doi: 10.1021/acsomega.5c04764. eCollection 2025 Aug 12.
3
Hydrophobicity in Intrinsically Disordered Protein Force Fields: Implications for Conformational Ensembles and Protein-Protein Interactions.
J Phys Chem B. 2025 Jul 10;129(27):6817-6827. doi: 10.1021/acs.jpcb.5c02360. Epub 2025 Jun 26.
5
Software Infrastructure for Next-Generation QM/MM-ΔMLP Force Fields.
J Phys Chem B. 2024 Jul 4;128(26):6257-6271. doi: 10.1021/acs.jpcb.4c01466. Epub 2024 Jun 21.
6
Advanced computational approaches to understand protein aggregation.
Biophys Rev (Melville). 2024 Apr 24;5(2):021302. doi: 10.1063/5.0180691. eCollection 2024 Jun.
8
Drug screening of α-amylase inhibitors as candidates for treating diabetes.
J Cell Mol Med. 2023 Aug;27(15):2249-2260. doi: 10.1111/jcmm.17831. Epub 2023 Jul 4.
10
Folding@home: Achievements from over 20 years of citizen science herald the exascale era.
Biophys J. 2023 Jul 25;122(14):2852-2863. doi: 10.1016/j.bpj.2023.03.028. Epub 2023 Mar 21.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
Optimizing Protein-Solvent Force Fields to Reproduce Intrinsic Conformational Preferences of Model Peptides.
J Chem Theory Comput. 2011 Apr 12;7(4):1220-30. doi: 10.1021/ct2000183. Epub 2011 Mar 7.
4
OpenMM: A Hardware Independent Framework for Molecular Simulations.
Comput Sci Eng. 2015 Jul 1;12(4):34-39. doi: 10.1109/MCSE.2010.27.
5
Quantitative comparison of villin headpiece subdomain simulations and triplet-triplet energy transfer experiments.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12734-9. doi: 10.1073/pnas.1010880108. Epub 2011 Jul 18.
6
How robust are protein folding simulations with respect to force field parameterization?
Biophys J. 2011 May 4;100(9):L47-9. doi: 10.1016/j.bpj.2011.03.051.
7
Populations of the three major backbone conformations in 19 amino acid dipeptides.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1794-8. doi: 10.1073/pnas.1017317108. Epub 2011 Jan 4.
9
Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
J Phys Chem B. 2010 Nov 25;114(46):14916-23. doi: 10.1021/jp108618d. Epub 2010 Nov 1.
10
Atomic-level characterization of the structural dynamics of proteins.
Science. 2010 Oct 15;330(6002):341-6. doi: 10.1126/science.1187409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验