Jha Abhishek K, Freed Karl F
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2008 Jan 21;128(3):034501. doi: 10.1063/1.2815764.
The physical content of and, in particular, the nonlinear contributions from the Langevin-Debye model are illustrated using two applications. First, we provide an improvement in the Langevin-Debye model currently used in some implicit solvent models for computer simulations of solvation free energies of small organic molecules, as well as of biomolecular folding and binding. The analysis is based on the implementation of a charge-dependent Langevin-Debye (qLD) model that is modified by subsequent corrections due to Onsager and Kirkwood. Second, the physical content of the model is elucidated by discussing the general treatment within the LD model of the self-energy of a charge submerged in a dielectric medium for three different limiting conditions and by considering the nonlinear response of the medium. The modified qLD model is used to refine an implicit solvent model (previously applied to protein dynamics). The predictions of the modified implicit solvent model are compared with those from explicit solvent molecular dynamics simulations for the equilibrium conformational populations of 1,2-dimethoxyethane (DME), which is the shortest ether molecule to reproduce the local conformational properties of polyethylene oxide, a polymer with tremendous technological importance and a wide variety of applications. Because the conformational population preferences of DME change dramatically upon solvation, DME is a good test case to validate our modified qLD model. The present analysis of the modified qLD model provides the motivation and tools for studying a wide variety of other interesting systems with heterogeneous dielectric properties and spatial anisotropy.
通过两个应用实例来说明朗之万 - 德拜模型的物理内涵,特别是其非线性贡献。首先,我们对当前一些用于计算机模拟小分子有机化合物溶剂化自由能、生物分子折叠和结合的隐式溶剂模型中所使用的朗之万 - 德拜模型进行了改进。该分析基于电荷依赖型朗之万 - 德拜(qLD)模型的实现,该模型因昂萨格和柯克伍德的后续修正而有所改进。其次,通过讨论在朗之万 - 德拜模型中,对于三种不同极限条件下浸没在电介质中的电荷自能的一般处理方式,并考虑介质的非线性响应,阐明了该模型的物理内涵。改进后的qLD模型用于完善一个隐式溶剂模型(该模型先前应用于蛋白质动力学)。将改进后的隐式溶剂模型的预测结果与显式溶剂分子动力学模拟对1,2 - 二甲氧基乙烷(DME)平衡构象分布的预测结果进行了比较,DME是能够重现聚环氧乙烷局部构象性质的最短醚分子,聚环氧乙烷是一种具有巨大技术重要性和广泛应用的聚合物。由于DME的构象分布偏好会因溶剂化作用而发生显著变化,所以DME是验证我们改进后的qLD模型的一个很好的测试案例。目前对改进后的qLD模型的分析为研究各种具有非均匀介电性质和空间各向异性的其他有趣系统提供了动机和工具。