人类运动皮层皮质脊髓兴奋性和皮质内抑制性神经回路的稳态形质变化。
Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex.
机构信息
Department of Neurology, Goethe-University, Frankfurt am Main, Germany.
出版信息
J Physiol. 2012 Nov 15;590(22):5765-81. doi: 10.1113/jphysiol.2012.238519. Epub 2012 Aug 28.
Homeostatic metaplasticity, a fundamental principle for maintaining overall synaptic weight in the physiological range in neuronal networks, was demonstrated at the cellular and systems level predominantly for excitatory synaptic neurotransmission. Although inhibitory networks are crucial for regulating excitability, it is largely unknown to what extent homeostatic metaplasticity of inhibition also exists. Here, we employed intermittent and continuous transcranial magnetic theta burst stimulation (iTBS, cTBS) of the primary motor cortex in healthy subjects for induction of long-term potentiation (LTP)-like and long-term depression (LTD)-like plasticity. We studied metaplasticity by testing the interactions of priming TBS with LTP/LTD-like plasticity induced by subsequent test TBS. Changes in excitatory neurotransmission were measured by the input-output curve of motor-evoked potentials (IO-MEP), and changes in GABA(A)ergic inhibitory neurotransmission by the IO of short-interval intracortical inhibition (IO-SICI, four conditioning stimulus intensities of 70-100% active motor threshold, interstimulus interval 2.0 ms). Non-primed iTBS increased IO-MEP, while non-primed cTBS decreased IO-MEP. Pairing of identical protocols (iTBSiTBS, cTBScTBS) resulted in suppression of the non-primed TBS effects on IO-MEP, and pairing of different protocols (cTBSiTBS, iTBScTBS) enhanced the test TBS effects on IO-MEP. While non-primed TBS did not result in significant changes of IO-SICI, iTBSiTBS resulted in IO-SICI decrease, and cTBScTBS in IO-SICI increase compared with the non-primed conditions. The changes in SICI induced by priming TBS correlated with the changes in MEP induced by subsequent test TBS. Findings demonstrate that plasticity in both excitatory and inhibitory circuits in the human motor cortex are regulated by homeostatic metaplasticity, and that priming effects on inhibition contribute to the homeostatic regulation of metaplasticity in excitatory circuits.
稳态形变相变,是维持神经元网络中整体突触权重在生理范围内的基本原理,主要在细胞和系统水平上被证明存在于兴奋性突触神经传递中。尽管抑制性网络对于调节兴奋性至关重要,但对于抑制性的稳态形变相变存在的程度在很大程度上仍然未知。在这里,我们在健康受试者中采用经颅磁刺激(TMS)的间歇性和连续性 theta 爆发刺激(iTBS、cTBS)来诱导长时程增强(LTP)样和长时程抑制(LTD)样可塑性。我们通过测试引发 TBS 与随后的测试 TBS 诱导的 LTP/LTD 样可塑性之间的相互作用来研究形变相变。兴奋性神经递质传递的变化通过运动诱发电位的输入-输出曲线(IO-MEP)来测量,而 GABA(A)能抑制性神经递质传递的变化通过短间隔内皮质内抑制的 IO(IO-SICI,四个刺激强度为 70-100%主动运动阈值,刺激间隔 2.0 ms)来测量。非引发 iTBS 增加 IO-MEP,而非引发 cTBS 降低 IO-MEP。相同方案(iTBSiTBS、cTBScTBS)的配对导致非引发 TBS 对 IO-MEP 的作用被抑制,而不同方案(cTBSiTBS、iTBScTBS)的配对增强了测试 TBS 对 IO-MEP 的作用。虽然非引发 TBS 不会导致 IO-SICI 发生显著变化,但 iTBSiTBS 导致 IO-SICI 降低,而 cTBScTBS 导致 IO-SICI 增加,与非引发条件相比。引发 TBS 诱导的 SICI 变化与随后的测试 TBS 诱导的 MEP 变化相关。这些发现表明,人类运动皮层中兴奋性和抑制性回路的可塑性受到稳态形变相变的调节,并且抑制性的引发效应有助于兴奋性回路中形变相变的稳态调节。
相似文献
Eur J Neurosci. 2011-4-14
J Neurosci. 2014-5-21
引用本文的文献
Bioelectron Med. 2025-5-23
Eur J Med Res. 2024-11-29
Neuropsychopharmacology. 2023-1
eNeurologicalSci. 2022-9-1
本文引用的文献
Exp Brain Res. 2011-12-6
Brain Stimul. 2010-10-26
J Neurosci. 2011-1-26
Clin Neurophysiol. 2010-12-30
Eur J Neurosci. 2010-8-19
J Physiol. 2010-7-26
Brain Stimul. 2008-10-7