Suppr超能文献

一种用于检测比例风险模型中多个变化点的序贯检验方法。

A sequential testing approach to detecting multiple change points in the proportional hazards model.

机构信息

Stanford University, Stanford, CA, USA.

出版信息

Stat Med. 2013 Mar 30;32(7):1239-45. doi: 10.1002/sim.5605. Epub 2012 Aug 30.

Abstract

The semi-parametric proportional hazards model has been widely adopted in clinical trials with time-to-event outcomes. A key assumption in the model is that the hazard ratio function is a constant over time, which is frequently violated as there is often a lag period before an experimental treatment reaches its full effect. One existing approach uses maximal score tests and Monte Carlo sampling to identify multiple change points in the hazard ratio function, which requires the number of change points that exist in the model to be known. We propose a sequential testing approach to detecting multiple change points in the hazard ratio function using likelihood ratio tests, and the distributions of the likelihood ratio statistics under the null hypothesis are evaluated via resampling. An important feature of the proposed approach is that the number of change points in the model is inferred from the data and does not need to be specified. Numerical results based on simulated clinical trials and a real time-to-event study show that the proposed approach can accurately detect the change points in the hazard ratio function.

摘要

半参数比例风险模型已广泛应用于具有生存时间结局的临床试验中。该模型的一个关键假设是风险比函数随时间保持不变,但由于实验治疗通常需要一段时间才能达到完全效果,因此该假设经常被违反。现有的一种方法使用最大得分检验和蒙特卡罗抽样来识别风险比函数中的多个变化点,但这需要知道模型中存在的变化点数量。我们提出了一种使用似然比检验来检测风险比函数中多个变化点的序贯检验方法,并且通过重采样来评估零假设下似然比统计量的分布。所提出方法的一个重要特点是,模型中的变化点数量是从数据中推断出来的,而不需要指定。基于模拟临床试验和实际生存时间研究的数值结果表明,所提出的方法可以准确地检测风险比函数中的变化点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验