Suppr超能文献

一种混合方法,用于预测具有时间事件结局的临床试验中的事件。

A hybrid approach to predicting events in clinical trials with time-to-event outcomes.

机构信息

Genentech Inc, South San Francisco, CA 94080, USA.

出版信息

Contemp Clin Trials. 2011 Sep;32(5):755-9. doi: 10.1016/j.cct.2011.05.013. Epub 2011 May 30.

Abstract

In many clinical trials with time-to-event outcomes there are interim analyses planned at pre-specified event counts. It is of great value to predict when the pre-specified event milestones can be reached based on the available data as the timeline for a study is essential to the study sponsors and data monitoring committees for logistic planning purposes. Both parametric and non-parametric approaches exist in the literature for estimating the underlining survival function, based on which the predictions of future event times can be determined. The parametric approaches assume that the survival function is smooth, which is often not the case as the survival function usually has one or multiple change points and the hazard functions can differ significantly before and after a change point. The existing non-parametric method bases predictions on the Kaplan-Meier survival curve appended with a parametric tail to the largest observation, and all of the available data is used to estimate the parametric tail. This approach also requires a smooth survival function in order to achieve an accurate estimate of the tail distribution. In this article, we propose a hybrid parametric, non-parametric approach to predicting events in clinical trials with time-to-event outcomes. The change points in the survival function are first detected, and the survival function before the last change point is estimated non-parametrically and the tail distribution beyond the last change point is estimated parametrically. Numerical results show that the proposed approach provides accurate predictions for future event times and outperforms the existing approaches.

摘要

在许多以时间为事件的临床试验中,计划在预定的事件计数时进行中期分析。根据可用数据预测何时可以达到预定的事件里程碑非常有价值,因为研究的时间表对于研究赞助商和数据监测委员会来说是逻辑规划的关键。文献中存在基于参数和非参数方法来估计潜在生存函数的方法,基于这些方法可以确定未来事件时间的预测。参数方法假设生存函数是平滑的,但通常情况下并非如此,因为生存函数通常有一个或多个变化点,并且在变化点之前和之后,危险函数可能有很大的差异。现有的非参数方法基于 Kaplan-Meier 生存曲线进行预测,并在最大观测值上添加参数尾巴,所有可用数据都用于估计参数尾巴。为了准确估计尾部分布,该方法还需要平滑的生存函数。在本文中,我们提出了一种混合参数、非参数方法来预测具有时间事件结果的临床试验中的事件。首先检测生存函数中的变化点,然后对最后一个变化点之前的生存函数进行非参数估计,对最后一个变化点之后的尾部分布进行参数估计。数值结果表明,所提出的方法可以为未来事件时间提供准确的预测,并且优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验