Sepúlveda-Rebolledo Pedro, González-Rosales Carolina, Dopson Mark, Pérez-Rueda Ernesto, Holmes David S, Valdés Jorge H
Microbial Ecophysiology Laboratory, CCTE Ciencia y Vida, Fundación Ciencia y Vida, Huechuraba 8580704, Chile.
Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile.
Microorganisms. 2025 May 24;13(6):1199. doi: 10.3390/microorganisms13061199.
Extreme acidophiles from the class thrive in highly acidic environments where they rely on diverse regulatory mechanisms for adaptation. These mechanisms include sigma factors, transcription factors (TFs), and transcription factor binding sites (TFBS), which control essential pathways. Comparative genomics and bioinformatics analyses identified sigma factors and TFs in , showing similarities but key differences from reference neutrophiles. This study highlights sigma54-dependent one- and two-component systems that are crucial for survival in energy acquisition from sulfur compounds and hydrogen as well as nutrient assimilation. Furthermore, the data suggested evolutionary divergence in regulatory elements distinguishes S-oxidizing from Fe-S-oxidizing members of . Conservation of gene clusters, synteny, and phylogenetic analyses supported the expected phenotypes in each species. Notable examples include HupR's role in hydrogenase-2 oxidation in Fe-S-oxidizers, TspR/TspS regulation of the sulfur oxidation complex, and FleR/FleS control of flagellar motility in S-oxidizers. These regulatory mechanisms act as master controllers of bacterial activity, reflecting adaptation to distinct metabolic needs within .
该类极端嗜酸菌在高酸性环境中茁壮成长,它们依靠多种调节机制来适应环境。这些机制包括控制基本途径的σ因子、转录因子(TFs)和转录因子结合位点(TFBS)。比较基因组学和生物信息学分析确定了该类中的σ因子和TFs,显示出与参考嗜中性菌的相似性但也有关键差异。本研究强调了依赖σ54的单组分和双组分系统,这些系统对于从硫化合物和氢气获取能量以及营养同化过程中的生存至关重要。此外,数据表明调节元件的进化差异区分了该类中的硫氧化成员和铁硫氧化成员。基因簇的保守性、共线性和系统发育分析支持了每个物种的预期表型。显著的例子包括HupR在铁硫氧化菌中对氢化酶-2氧化的作用、TspR/TspS对硫氧化复合体的调节以及FleR/FleS对硫氧化菌鞭毛运动的控制。这些调节机制充当细菌活性的主要控制器,反映了该类中对不同代谢需求的适应。