Division of Nuclear Medicine, University Hospital and Katholieke Universiteit, Leuven, Belgium.
J Nucl Med. 2012 Oct;53(10):1565-72. doi: 10.2967/jnumed.111.099416. Epub 2012 Aug 29.
The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies.
Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters.
The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of dopamine of 200 nM showed that an effect of striatal ligand displacement could be detected only when task timing was greater than 120 min.
The prefrontal and anterior cingulate cortices are involved in reward responsiveness that can be measured using (18)F-fallypride PET in a single scanning session. To measure both striatal and extrastriatal dopamine release, the height of dopamine released and task timing need to be considered in designing activation studies depending on regional D(2/3) density.
高亲和力 D(2/3)PET 放射性配体 (18)F-氟丙嗪有可能在激活范式期间测量纹状体和纹状体外多巴胺的释放。当使用单一 (18)F-氟丙嗪扫描方案时,任务时间安排对于同时探索纹状体和纹状体外多巴胺释放的能力至关重要。我们使用人体和模拟研究评估了单一 (18)F-氟丙嗪 PET 方案和线性简化参考区域动力学模型的敏感性和最佳任务给药时间,以检测纹状体和纹状体外奖赏诱导的多巴胺释放。
10 名健康志愿者接受了单次 (18)F-氟丙嗪 PET 方案。在注射后 100 分钟开始奖励反应性学习任务。使用线性简化参考区域模型分析 PET 数据,该模型考虑了 (18)F-氟丙嗪置换的时变。进行基于体素的统计映射,反映任务诱导的 D(2/3)配体置换,并进行感兴趣区分析,以定位任务开始后配体置换增加的区域,认为这与内源性多巴胺释放的变化(γ 参数)成正比。使用增强的受体结合动力学模型生成基线和假设的多巴胺释放功能(不同的多巴胺峰高和任务时间)的模拟时间-活性曲线,以研究 γ 作为这些参数的函数。
奖励任务诱导了奖赏回路中外侧纹状体区域的配体置换增加,包括内侧眶额皮质、腹内侧前额皮质和背侧前扣带皮质。对于 100 分钟的任务时间,只有当多巴胺的峰值高度大于 240 nM 时,纹状体才会发现配体置换,而对于额叶区域,对于所有任务时间和多巴胺的峰值高度,γ 始终为正。多巴胺峰值高度为 200 nM 的模拟结果表明,只有当任务时间大于 120 分钟时,才能检测到纹状体配体置换的效果。
前额叶和前扣带皮质参与了奖励反应性,使用 (18)F-氟丙嗪 PET 可以在单次扫描中进行测量。为了测量纹状体和纹状体外多巴胺的释放,在设计激活研究时,需要根据区域 D(2/3)密度考虑释放的多巴胺的高度和任务时间安排。