State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, PR China.
ACS Appl Mater Interfaces. 2012 Sep 26;4(9):4752-7. doi: 10.1021/am301123f. Epub 2012 Aug 30.
Monodisperse Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are prepared via a surfactant-free solvothermal combined with precursor thermal transformation method. The as-prepared Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres have a relatively high specific surface area of 122.3 and 138.6 m(2)/g, respectively. The Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are explored as the anode materials for lithium-ion batteries, and they have a high initial discharge capacity of 1307 and 1453 mA h/g, respectively, and a good reversible performance (450 mA h/g for Fe(3)O(4) and 697 mA h/g for γ-Fe(2)O(3) after 110 cycles) at the current density of 0.2C.
通过无表面活性剂的溶剂热法结合前驱体热转化法制备了单分散 Fe(3)O(4)和 γ-Fe(2)O(3) 磁性介孔微球。所制备的 Fe(3)O(4)和 γ-Fe(2)O(3)磁性介孔微球具有相对较高的比表面积,分别为 122.3 和 138.6 m(2)/g。将 Fe(3)O(4)和 γ-Fe(2)O(3)磁性介孔微球用作锂离子电池的阳极材料,它们具有较高的初始放电容量,分别为 1307 和 1453 mA h/g,并且在 0.2C 的电流密度下具有良好的可逆性能(Fe(3)O(4)为 450 mA h/g,γ-Fe(2)O(3)为 697 mA h/g,经过 110 次循环后)。