Suppr超能文献

利用多目标进化优化增强对普萘洛尔的表面增强拉曼散射(SERS)检测。

Enhancing surface enhanced Raman scattering (SERS) detection of propranolol with multiobjective evolutionary optimization.

机构信息

Faculty of Life Sciences, Manchester Institute of Biotechnology, University of Manchester, UK.

出版信息

Anal Chem. 2012 Sep 18;84(18):7899-905. doi: 10.1021/ac301647a. Epub 2012 Sep 7.

Abstract

Colloidal-based surface-enhanced Raman scattering (SERS) is a complex technique, where interaction between multiple parameters, such as colloid type, its concentration, and aggregating agent, is poorly understood. As a result SERS has so far achieved limited reproducibility. Therefore the aim of this study was to improve enhancement and reproducibility in SERS, and to achieve this, we have developed a multiobjective evolutionary algorithm (MOEA) based on Pareto optimality. In this MOEA approach, we tested a combination of five different colloids with six different aggregating agents, and a wide range of concentrations for both were explored; in addition we included in the optimization process three laser excitation wavelengths. For this optimization of experimental conditions for SERS, we chose the β-adrenergic blocker drug propranolol as the target analyte. The objective functions chosen suitable for this multiobjective problem were the ratio between the full width at half-maximum and the half-maximum intensity for enhancement and correlation coefficient for reproducibility. To analyze a full search of all the experimental conditions, 7785 experiments would have to be performed empirically; however, we demonstrated the search for acceptable experimental conditions of SERS can be achieved using only 4% of these possible experiments. The MOEA identified several experimental conditions for each objective which allowed a limit of detection of 2.36 ng/mL (7.97 nM) propranolol, and this is significantly lower (>25 times) than previous SERS studies aimed at detecting this β-blocker.

摘要

基于胶体的表面增强拉曼散射(SERS)是一种复杂的技术,其中胶体类型、其浓度和聚集剂等多个参数之间的相互作用理解得很差。结果,SERS 迄今为止实现的重现性非常有限。因此,本研究的目的是提高 SERS 的增强和重现性,为此,我们开发了一种基于 Pareto 最优性的多目标进化算法(MOEA)。在这种 MOEA 方法中,我们测试了五种不同胶体与六种不同聚集剂的组合,并探索了两者的广泛浓度范围;此外,我们还在优化过程中包括了三个激光激发波长。对于这种 SERS 实验条件的优化,我们选择了β肾上腺素能阻滞剂药物普萘洛尔作为目标分析物。选择适合这种多目标问题的目标函数是增强的半峰全宽与半峰最大强度之比以及重现性的相关系数。要分析所有实验条件的完全搜索,需要进行 7785 次实验;然而,我们证明了仅使用这些可能实验的 4%就可以搜索到可接受的 SERS 实验条件。MOEA 为每个目标确定了几种实验条件,这些条件允许检测到 2.36 ng/mL(7.97 nM)普萘洛尔的检测限,这明显低于(>25 倍)以前旨在检测这种β阻滞剂的 SERS 研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验