School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7520, United States.
Anal Chem. 2013 Feb 19;85(4):2320-7. doi: 10.1021/ac303279u. Epub 2013 Feb 1.
Rapid detection and differentiation of methicillin-resistant Staphylococcus aureus (MRSA) are critical for the early diagnosis of difficult-to-treat nosocomial and community acquired clinical infections and improved epidemiological surveillance. We developed a microfluidics chip coupled with surface enhanced Raman scattering (SERS) spectroscopy (532 nm) "lab-on-a-chip" system to rapidly detect and differentiate methicillin-sensitive S. aureus (MSSA) and MRSA using clinical isolates from China and the United States. A total of 21 MSSA isolates and 37 MRSA isolates recovered from infected humans were first analyzed by using polymerase chain reaction (PCR) and multilocus sequence typing (MLST). The mecA gene, which refers resistant to methicillin, was detected in all the MRSA isolates, and different allelic profiles were identified assigning isolates as either previously identified or novel clones. A total of 17 400 SERS spectra of the 58 S. aureus isolates were collected within 3.5 h using this optofluidic platform. Intra- and interlaboratory spectral reproducibility yielded a differentiation index value of 3.43-4.06 and demonstrated the feasibility of using this optofluidic system at different laboratories for bacterial identification. A global SERS-based dendrogram model for MRSA and MSSA identification and differentiation to the strain level was established and cross-validated (Simpson index of diversity of 0.989) and had an average recognition rate of 95% for S. aureus isolates associated with a recent outbreak in China. SERS typing correlated well with MLST indicating that it has high sensitivity and selectivity and would be suitable for determining the origin and possible spread of MRSA. A SERS-based partial least-squares regression model could quantify the actual concentration of a specific MRSA isolate in a bacterial mixture at levels from 5% to 100% (regression coefficient, >0.98; residual prediction deviation, >10.05). This optofluidic platform has advantages over traditional genotyping for ultrafast, automated, and reliable detection and epidemiological surveillance of bacterial infections.
快速检测和区分耐甲氧西林金黄色葡萄球菌(MRSA)对于早期诊断治疗困难的医院获得性和社区获得性临床感染以及改善流行病学监测至关重要。我们开发了一种微流控芯片与表面增强拉曼散射(SERS)光谱(532nm)相结合的“芯片实验室”系统,用于快速检测和区分来自中国和美国的临床分离株的甲氧西林敏感金黄色葡萄球菌(MSSA)和 MRSA。首先,对 21 株 MSSA 分离株和 37 株 MRSA 分离株进行聚合酶链反应(PCR)和多位点序列分型(MLST)分析。所有 MRSA 分离株均检测到 mecA 基因,该基因对甲氧西林耐药,不同的等位基因谱鉴定分离株为先前鉴定或新型克隆。使用该光流控平台在 3.5 小时内收集了 58 株金黄色葡萄球菌分离株的 17400 个 SERS 光谱。室内和实验室间的光谱重现性产生了 3.43-4.06 的区分指数值,证明了该光流控系统在不同实验室进行细菌鉴定的可行性。建立并交叉验证了基于全局 SERS 的 MRSA 和 MSSA 鉴定和区分到菌株水平的树状图模型(多样性 Simpson 指数为 0.989),对中国近期暴发的金黄色葡萄球菌分离株的识别率平均为 95%。SERS 分型与 MLST 相关性良好,表明其具有高灵敏度和选择性,适用于确定 MRSA 的来源和可能传播。SERS 基于偏最小二乘回归模型可以定量测定细菌混合物中特定 MRSA 分离株的实际浓度,范围从 5%到 100%(回归系数>0.98;剩余预测偏差>10.05)。与传统的基因分型相比,这种光流控平台具有快速、自动化和可靠检测以及细菌感染的流行病学监测的优势。