Suppr超能文献

与化学生物学研究相关的计算生命科学数据库及交换格式概述。

An overview of computational life science databases & exchange formats of relevance to chemical biology research.

作者信息

Smalter Hall Aaron, Shan Yunfeng, Lushington Gerald, Visvanathan Mahesh

机构信息

Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66047, USA.

出版信息

Comb Chem High Throughput Screen. 2013 Mar;16(3):189-98. doi: 10.2174/1386207311316030004.

Abstract

Databases and exchange formats describing biological entities such as chemicals and proteins, along with their relationships, are a critical component of research in life sciences disciplines, including chemical biology wherein small information about small molecule properties converges with cellular and molecular biology. Databases for storing biological entities are growing not only in size, but also in type, with many similarities between them and often subtle differences. The data formats available to describe and exchange these entities are numerous as well. In general, each format is optimized for a particular purpose or database, and hence some understanding of these formats is required when choosing one for research purposes. This paper reviews a selection of different databases and data formats with the goal of summarizing their purposes, features, and limitations. Databases are reviewed under the categories of 1) protein interactions, 2) metabolic pathways, 3) chemical interactions, and 4) drug discovery. Representation formats will be discussed according to those describing chemical structures, and those describing genomic/proteomic entities.

摘要

描述诸如化学物质和蛋白质等生物实体及其相互关系的数据库和交换格式,是生命科学学科研究的关键组成部分,包括化学生物学,其中小分子特性的少量信息与细胞生物学和分子生物学相结合。用于存储生物实体的数据库不仅在规模上不断增长,而且在类型上也不断增加,它们之间有许多相似之处,也常常存在细微差异。可用于描述和交换这些实体的数据格式也多种多样。一般来说,每种格式都针对特定目的或数据库进行了优化,因此在为研究目的选择一种格式时,需要对这些格式有所了解。本文综述了一系列不同的数据库和数据格式,目的是总结它们的用途、特点和局限性。数据库按照以下类别进行综述:1)蛋白质相互作用,2)代谢途径,3)化学相互作用,4)药物发现。表示格式将根据描述化学结构的格式和描述基因组/蛋白质组实体的格式进行讨论。

相似文献

1
An overview of computational life science databases & exchange formats of relevance to chemical biology research.
Comb Chem High Throughput Screen. 2013 Mar;16(3):189-98. doi: 10.2174/1386207311316030004.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Current trends in antimicrobial agent research: chemo- and bioinformatics approaches.
Drug Discov Today. 2010 Jul;15(13-14):540-6. doi: 10.1016/j.drudis.2010.05.002. Epub 2010 May 26.
4
Knowledge representation in metabolic pathway databases.
Brief Bioinform. 2014 May;15(3):455-70. doi: 10.1093/bib/bbs060. Epub 2012 Nov 30.
5
Accessing and using chemical property databases.
Methods Mol Biol. 2012;929:193-219. doi: 10.1007/978-1-62703-050-2_9.
6
Small molecule databases and chemical descriptors useful in chemoinformatics: an overview.
Comb Chem High Throughput Screen. 2011 Jul;14(6):548-458. doi: 10.2174/138620711795767857.
7
cPath: open source software for collecting, storing, and querying biological pathways.
BMC Bioinformatics. 2006 Nov 13;7:497. doi: 10.1186/1471-2105-7-497.
8
Computational methodologies for compound database searching that utilize experimental protein-ligand interaction information.
Chem Biol Drug Des. 2010 Sep 1;76(3):191-200. doi: 10.1111/j.1747-0285.2010.01007.x. Epub 2010 Jul 15.
9
What Can We Learn from Bioactivity Data? Chemoinformatics Tools and Applications in Chemical Biology Research.
ACS Chem Biol. 2017 Jan 20;12(1):23-35. doi: 10.1021/acschembio.6b00706. Epub 2016 Dec 5.
10
Public databases of plant natural products for computational drug discovery.
Curr Comput Aided Drug Des. 2014;10(3):191-6. doi: 10.2174/1573409910666140414145934.

引用本文的文献

1
Toxicology Data Resources to Support Read-Across and (Q)SAR.
Front Pharmacol. 2019 Jun 11;10:561. doi: 10.3389/fphar.2019.00561. eCollection 2019.

本文引用的文献

1
Systems Biology Markup Language (SBML) Level 2 Version 5: Structures and Facilities for Model Definitions.
J Integr Bioinform. 2015 Sep 4;12(2):271. doi: 10.2390/biecoll-jib-2015-271.
2
Reactome knowledgebase of human biological pathways and processes.
Methods Mol Biol. 2011;694:49-61. doi: 10.1007/978-1-60761-977-2_4.
3
DrugBank 3.0: a comprehensive resource for 'omics' research on drugs.
Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41. doi: 10.1093/nar/gkq1126. Epub 2010 Nov 8.
4
Update of TTD: Therapeutic Target Database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D787-91. doi: 10.1093/nar/gkp1014. Epub 2009 Nov 20.
5
BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome.
Nucleic Acids Res. 2010 Jan;38(Database issue):D765-73. doi: 10.1093/nar/gkp852. Epub 2009 Nov 18.
6
STITCH 2: an interaction network database for small molecules and proteins.
Nucleic Acids Res. 2010 Jan;38(Database issue):D552-6. doi: 10.1093/nar/gkp937. Epub 2009 Nov 6.
7
MINT, the molecular interaction database: 2009 update.
Nucleic Acids Res. 2010 Jan;38(Database issue):D532-9. doi: 10.1093/nar/gkp983. Epub 2009 Nov 6.
8
Chemical Entities of Biological Interest: an update.
Nucleic Acids Res. 2010 Jan;38(Database issue):D249-54. doi: 10.1093/nar/gkp886. Epub 2009 Oct 23.
9
PubChem: a public information system for analyzing bioactivities of small molecules.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W623-33. doi: 10.1093/nar/gkp456. Epub 2009 Jun 4.
10
Databases of protein-protein interactions and their use in drug discovery.
Curr Opin Drug Discov Devel. 2009 May;12(3):358-66.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验