Suppr超能文献

视野共享的时间分辨 3D CE-MRA 中的图像质量的增强。

Buildup of image quality in view-shared time-resolved 3D CE-MRA.

机构信息

MR Research Laboratory and Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Magn Reson Med. 2013 Aug;70(2):348-57. doi: 10.1002/mrm.24466. Epub 2012 Aug 30.

Abstract

Time-resolved three-dimensional contrast-enhanced MR angiography often relies on view sharing of peripheral k-space data to enable acquisition of angiograms with both high spatial resolution and a rapid frame rate. It is typically assumed that k-space will be fully sampled during passage of the contrast bolus arterial phase. However, this is not the case when view sharing is incomplete, for example, at the leading edge of an enhancing vessel or if acquisition time is limited as in fluoroscopic tracking for multistation bolus chase MR angiography. Incomplete view sharing will degrade image quality, for example, by reducing vessel signal and sharpness and increasing undersampling artifacts. In this work, the evolution of angiogram quality with view sharing is quantitatively assessed in phantom experiments and in vivo contrast-enhanced MR angiography calf studies. It is demonstrated that there are multiple sets of sequence parameters that can yield a target image update time, but the choice of parameters can profoundly affect how image quality evolves with view sharing. A fundamental tradeoff between vessel signal and sharpness and its relationship to the sequence temporal footprint is investigated and discussed.

摘要

时分辨三维对比增强磁共振血管造影术通常依赖于外周 K 空间数据的视图共享,以实现具有高空间分辨率和快速帧率的血管造影图的获取。通常假设在对比剂团注动脉期通过时,K 空间将被完全采样。然而,当视图共享不完整时,情况并非如此,例如在增强血管的前缘,或者如果采集时间有限,例如在透视跟踪多站团注追踪磁共振血管造影术中。视图共享不完整会降低图像质量,例如,降低血管信号和锐度,并增加欠采样伪影。在这项工作中,通过体模实验和体内对比增强磁共振血管造影小腿研究定量评估了视图共享时血管造影质量的演变。结果表明,有多种序列参数可以产生目标图像更新时间,但参数的选择可以极大地影响视图共享时图像质量的演变方式。研究并讨论了血管信号和锐度之间的基本权衡及其与序列时间足迹的关系。

相似文献

1
Buildup of image quality in view-shared time-resolved 3D CE-MRA.
Magn Reson Med. 2013 Aug;70(2):348-57. doi: 10.1002/mrm.24466. Epub 2012 Aug 30.
2
Reducing view-sharing using compressed sensing in time-resolved contrast-enhanced magnetic resonance angiography.
Magn Reson Med. 2015 Aug;74(2):474-81. doi: 10.1002/mrm.25414. Epub 2014 Aug 26.
3
Controlled experimental study depicting moving objects in view-shared time-resolved 3D MRA.
Magn Reson Med. 2009 Jul;62(1):85-95. doi: 10.1002/mrm.21993.
5
Image analysis in time-resolved large field of view 3D MR-angiography at 3T.
J Magn Reson Imaging. 2008 Nov;28(5):1116-24. doi: 10.1002/jmri.21554.
10
Time-resolved 3D MR angiography of the foot at 3 T in patients with peripheral arterial disease.
AJR Am J Roentgenol. 2008 Jun;190(6):W360-4. doi: 10.2214/AJR.07.2545.

引用本文的文献

5
Recent advances in 3D time-resolved contrast-enhanced MR angiography.
J Magn Reson Imaging. 2015 Jul;42(1):3-22. doi: 10.1002/jmri.24880. Epub 2015 Jun 1.
6
Three-station three-dimensional bolus-chase MR angiography with real-time fluoroscopic tracking.
Radiology. 2014 Jul;272(1):241-51. doi: 10.1148/radiol.14131603. Epub 2014 Mar 14.

本文引用的文献

2
Time-resolved bolus-chase MR angiography with real-time triggering of table motion.
Magn Reson Med. 2010 Sep;64(3):629-37. doi: 10.1002/mrm.22537.
4
Controlled experimental study depicting moving objects in view-shared time-resolved 3D MRA.
Magn Reson Med. 2009 Jul;62(1):85-95. doi: 10.1002/mrm.21993.
7
3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain.
Magn Reson Med. 2008 Sep;60(3):749-60. doi: 10.1002/mrm.21675.
8
Homodyne detection in magnetic resonance imaging.
IEEE Trans Med Imaging. 1991;10(2):154-63. doi: 10.1109/42.79473.
9
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
10
Highly constrained backprojection for time-resolved MRI.
Magn Reson Med. 2006 Jan;55(1):30-40. doi: 10.1002/mrm.20772.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验