文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

姜黄素 C3 复合物载药纳米粒的放大、优化及用于癌症治疗的稳定性分析。

Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy.

机构信息

Department of Molecular Biology & Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.

出版信息

J Nanobiotechnology. 2012 Aug 31;10:38. doi: 10.1186/1477-3155-10-38.


DOI:10.1186/1477-3155-10-38
PMID:22937885
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3497871/
Abstract

BACKGROUND: Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. METHODS: In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. RESULTS: Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5±9.8 nm and the drug loading was determined to be 10.32±1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. CONCLUSIONS: A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch.

摘要

背景:基于纳米粒子的抗癌药物输送已得到广泛研究。然而,对于任何制药行业的研发来说,一个非常重要的过程是扩大纳米粒子配方技术,以便生产大量用于临床前和临床试验的批次。这个过程不仅至关重要,而且非常困难,因为它涉及到各种制剂参数的调节,所有这些参数都要在同一个过程中进行调节。

方法:在本研究中,我们将姜黄素负载的聚(乳酸-共-乙醇酸)纳米粒子(PLGA-CURC)进行了配方设计。这提高了姜黄素的生物利用度,姜黄素是一种有效的天然抗癌药物,使其适用于癌症治疗。在制剂后,我们使用响应面法(RSM)中的中心复合设计(CCD)对我们的过程进行了优化,并分四个阶段对制剂过程进行了放大,最终的放大过程在实验室设备中产生了 5 克载姜黄素的纳米粒子。对放大后形成的纳米粒子进行了粒径、载药量和包封效率、表面形态、体外释放动力学和药代动力学的特性分析。还进行了稳定性分析和伽马射线灭菌。

结果:结果表明,该过程的放大正在掌握之中,以达到 5 克的水平。发现放大批的平均纳米粒子大小为 158.5±9.8nm,药物载药量为 10.32±1.4%。体外释放研究表明,在 10 天的时间内,75%的药物呈缓慢持续释放。PLGA-CURC 经静脉注射给药后在大鼠体内的药代动力学特征呈双室模型,曲线下面积(AUC0-∞)为 6.139mg/L·h。伽马射线灭菌对纳米粒子的粒径或载药量没有显著影响。稳定性分析表明,PLGA-CURC 制剂具有长期的物理化学稳定性。

结论:成功地采用固-油/水乳液技术进行了 PLGA-CURC 的配方设计、优化和放大。该过程使用 CCD-RSM 进行优化,并进一步放大到生产 5 克 PLGA-CURC,其理化性质与原始配方批次几乎相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/100acf20cff0/1477-3155-10-38-13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/555c39ad6518/1477-3155-10-38-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/113897956ad6/1477-3155-10-38-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/1dd36e7d5ca6/1477-3155-10-38-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/4085fa373bb3/1477-3155-10-38-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/70a0a4b0d060/1477-3155-10-38-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/62b5a468e258/1477-3155-10-38-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/0bd9f88e38a5/1477-3155-10-38-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/38fa688d9b00/1477-3155-10-38-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/d9c51dab9542/1477-3155-10-38-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/f6f4d1e59ccc/1477-3155-10-38-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/1de48b499cf9/1477-3155-10-38-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/06907739a10f/1477-3155-10-38-12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/100acf20cff0/1477-3155-10-38-13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/555c39ad6518/1477-3155-10-38-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/113897956ad6/1477-3155-10-38-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/1dd36e7d5ca6/1477-3155-10-38-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/4085fa373bb3/1477-3155-10-38-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/70a0a4b0d060/1477-3155-10-38-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/62b5a468e258/1477-3155-10-38-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/0bd9f88e38a5/1477-3155-10-38-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/38fa688d9b00/1477-3155-10-38-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/d9c51dab9542/1477-3155-10-38-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/f6f4d1e59ccc/1477-3155-10-38-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/1de48b499cf9/1477-3155-10-38-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/06907739a10f/1477-3155-10-38-12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e65/3497871/100acf20cff0/1477-3155-10-38-13.jpg

相似文献

[1]
Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy.

J Nanobiotechnology. 2012-8-31

[2]
Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.

J Nanobiotechnology. 2018-2-12

[3]
Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy.

Anticancer Res. 2009-10

[4]
Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).

Int J Nanomedicine. 2013-11-7

[5]
Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA.

Int J Nanomedicine. 2011-8-17

[6]
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.

Small. 2015-9

[7]
Poly(lactic--glycolic acid)-loaded nanoparticles of betulinic acid for improved treatment of hepatic cancer: characterization, in vitro and in vivo evaluations.

Int J Nanomedicine. 2018-2-16

[8]
Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients.

Int J Nanomedicine. 2010-8-9

[9]
Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.

Biomaterials. 2009-7

[10]
Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells.

J Colloid Interface Sci. 2010-5-12

引用本文的文献

[1]
Targeting Cancer Cell Fate: Apoptosis, Autophagy, and Gold Nanoparticles in Treatment Strategies.

Curr Issues Mol Biol. 2025-6-14

[2]
Prodrug nanotherapy demonstrates anticryptosporidial efficacy in a mouse model of chronic infection.

RSC Pharm. 2024-9-19

[3]
Albumin Nanoparticle-Based Drug Delivery Systems.

Int J Nanomedicine. 2024

[4]
Anti-Cancer and Anti-Oxidant Effects of Fenoferin-loaded Human Serum Albumin Nanoparticles Coated with Folic Acid-bound Chitosan.

Curr Mol Med. 2025

[5]
Toxicity Evaluation and Controlled-Release of Curcumin-Loaded Amphiphilic Poly-N-vinylpyrrolidone Nanoparticles: In Vitro and In Vivo Models.

Pharmaceutics. 2023-12-19

[6]
Machine learning assisted exploration of the influential parameters on the PLGA nanoparticles.

Sci Rep. 2024-1-11

[7]
Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review.

Pharmaceutics. 2022-10-25

[8]
Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review.

Drug Deliv. 2021-12

[9]
Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles.

Drug Deliv Transl Res. 2019-10

[10]
Enhancing the Delivery of Chemotherapeutics: Role of Biodegradable Polymeric Nanoparticles.

Molecules. 2018-8-27

本文引用的文献

[1]
Curcumin nanoformulations: a future nanomedicine for cancer.

Drug Discov Today. 2011-9-18

[2]
Design of curcumin loaded cellulose nanoparticles for prostate cancer.

Curr Drug Metab. 2012-1

[3]
Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma.

Nanomedicine. 2011-8-10

[4]
A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging.

Nanotechnology. 2011-6-21

[5]
Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design.

Int J Nanomedicine. 2011-4-6

[6]
Preparation and optimization of doxorubicin-loaded albumin nanoparticles using response surface methodology.

Drug Dev Ind Pharm. 2011-3-31

[7]
Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.

Nanotechnology. 2010-12-20

[8]
Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles.

Int J Pharm. 2010-9-8

[9]
The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation.

Biomaterials. 2010-9

[10]
Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications.

Int J Pharm. 2010-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索