Department of Molecular Biology & Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
J Nanobiotechnology. 2012 Aug 31;10:38. doi: 10.1186/1477-3155-10-38.
BACKGROUND: Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. METHODS: In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. RESULTS: Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5±9.8 nm and the drug loading was determined to be 10.32±1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. CONCLUSIONS: A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch.
背景:基于纳米粒子的抗癌药物输送已得到广泛研究。然而,对于任何制药行业的研发来说,一个非常重要的过程是扩大纳米粒子配方技术,以便生产大量用于临床前和临床试验的批次。这个过程不仅至关重要,而且非常困难,因为它涉及到各种制剂参数的调节,所有这些参数都要在同一个过程中进行调节。
方法:在本研究中,我们将姜黄素负载的聚(乳酸-共-乙醇酸)纳米粒子(PLGA-CURC)进行了配方设计。这提高了姜黄素的生物利用度,姜黄素是一种有效的天然抗癌药物,使其适用于癌症治疗。在制剂后,我们使用响应面法(RSM)中的中心复合设计(CCD)对我们的过程进行了优化,并分四个阶段对制剂过程进行了放大,最终的放大过程在实验室设备中产生了 5 克载姜黄素的纳米粒子。对放大后形成的纳米粒子进行了粒径、载药量和包封效率、表面形态、体外释放动力学和药代动力学的特性分析。还进行了稳定性分析和伽马射线灭菌。
结果:结果表明,该过程的放大正在掌握之中,以达到 5 克的水平。发现放大批的平均纳米粒子大小为 158.5±9.8nm,药物载药量为 10.32±1.4%。体外释放研究表明,在 10 天的时间内,75%的药物呈缓慢持续释放。PLGA-CURC 经静脉注射给药后在大鼠体内的药代动力学特征呈双室模型,曲线下面积(AUC0-∞)为 6.139mg/L·h。伽马射线灭菌对纳米粒子的粒径或载药量没有显著影响。稳定性分析表明,PLGA-CURC 制剂具有长期的物理化学稳定性。
结论:成功地采用固-油/水乳液技术进行了 PLGA-CURC 的配方设计、优化和放大。该过程使用 CCD-RSM 进行优化,并进一步放大到生产 5 克 PLGA-CURC,其理化性质与原始配方批次几乎相同。
J Nanobiotechnology. 2012-8-31
J Nanobiotechnology. 2018-2-12
J Colloid Interface Sci. 2010-5-12
Curr Issues Mol Biol. 2025-6-14
Int J Nanomedicine. 2024
Pharmaceutics. 2022-10-25
Drug Deliv Transl Res. 2019-10
Drug Discov Today. 2011-9-18
Curr Drug Metab. 2012-1
Drug Dev Ind Pharm. 2011-3-31
Nanotechnology. 2010-12-20