Kouri Maria Anthi, Tsaroucha Alexandra, Axakali Theano-Marina, Varelas Panagiotis, Kouloulias Vassilis, Platoni Kalliopi, Efstathopoulos Efstathios P
Department of Applied Medical Physics, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Medical Physics, General Hospital GHA Korgialeneio Mpenakeio-Hellenic Red Cross, 11526 Athens, Greece.
Curr Issues Mol Biol. 2025 Jun 14;47(6):460. doi: 10.3390/cimb47060460.
At the intersection of nanotechnology and cancer biology, gold nanoparticles (AuNPs) have emerged as more than passive carriers-they are active agents capable of reshaping cellular fate. Among their most promising attributes is the potential to modulate apoptosis and autophagy, two intricately linked pathways that determine tumor response to stress, damage, and treatment. Apoptosis serves as the principal mechanism of programmed cell death, while autophagy offers a dualistic role-preserving survival under transient stress or contributing to cell death under sustained insult. Thus, understanding how these mechanisms interact-and how AuNPs influence this crosstalk-may be key to unlocking more effective oncologic therapies. This review explores the molecular interplay between apoptosis and autophagy in cancer and evaluates how AuNPs impact these pathways. By enhancing radiosensitization in radiation therapy and improving drug delivery and chemotherapeutic precision, AuNPs offer a unique strategy to circumvent resistance in aggressive or refractory tumors towards shaping their biological behavior and cellular pathways and, therefore, forming a patient-centered personalized therapeutic potential. Yet, clinical translation remains challenging. The dynamic physicochemical nature of AuNPs makes their biological behavior highly context-dependent. Combined with the complexity of apoptotic and autophagic signaling and tumor heterogeneity, this creates a triad of profound intricacy. However, within this complexity lies therapeutic opportunity. Framing AuNPs, apoptosis, and autophagy as a synergistic axis may enable mechanism-informed, adaptable, and patient-specific cancer therapies. This paradigm shift invites a more strategic integration of nanotechnology with molecular oncology, advancing the frontier of precision medicine.
在纳米技术与癌症生物学的交叉领域,金纳米颗粒(AuNPs)已不仅仅是被动载体——它们是能够重塑细胞命运的活性剂。其最具前景的特性之一是调节细胞凋亡和自噬的潜力,这两条紧密相连的途径决定了肿瘤对压力、损伤和治疗的反应。细胞凋亡是程序性细胞死亡的主要机制,而自噬则具有双重作用——在短暂应激下维持细胞存活,或在持续损伤下导致细胞死亡。因此,了解这些机制如何相互作用,以及AuNPs如何影响这种相互作用,可能是解锁更有效肿瘤治疗方法的关键。本综述探讨了癌症中细胞凋亡和自噬之间的分子相互作用,并评估了AuNPs如何影响这些途径。通过增强放射治疗中的放射增敏作用以及改善药物递送和化疗精度,AuNPs提供了一种独特的策略,以规避侵袭性或难治性肿瘤的耐药性,从而塑造其生物学行为和细胞途径,进而形成以患者为中心的个性化治疗潜力。然而,临床转化仍然具有挑战性。AuNPs动态的物理化学性质使其生物学行为高度依赖于具体环境。再加上细胞凋亡和自噬信号传导的复杂性以及肿瘤异质性,这构成了一个极其复杂的三元组。然而,在这种复杂性中蕴含着治疗机会。将AuNPs、细胞凋亡和自噬构建为一个协同轴,可能实现基于机制的、适应性强且针对患者的癌症治疗。这种范式转变促使纳米技术与分子肿瘤学进行更具战略性的整合,推动精准医学的前沿发展。
Curr Issues Mol Biol. 2025-6-14
Psychopharmacol Bull. 2024-7-8
2025-1
Cochrane Database Syst Rev. 2018-2-6
Acta Pharm Sin B. 2025-5
Curr Opin Cell Biol. 2025-8
Curr Opin Cell Biol. 2025-8
Curr Opin Cell Biol. 2025-8
Curr Opin Cell Biol. 2025-8
Pharmaceuticals (Basel). 2025-4-2
Acta Pharm Sin B. 2025-2
Pharmaceuticals (Basel). 2025-2-26