Suppr超能文献

检测尖峰神经元放电序列中的爆发与停顿

Detection of bursts and pauses in spike trains.

机构信息

Department of Management Science and Statistics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.

出版信息

J Neurosci Methods. 2012 Oct 15;211(1):145-58. doi: 10.1016/j.jneumeth.2012.08.013. Epub 2012 Aug 23.

Abstract

Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons.

摘要

中脑多巴胺能神经元在体内表现出广泛的放电模式。它们通常以低速率持续不断地放电,当奖励超过预期时会加快速度,产生一个相位突发,或者当预期的奖励没有出现时会暂停。因此,在研究相位多巴胺(DA)在奖励相关学习和其他依赖 DA 的行为中的作用时,从尖峰列车数据中检测突发和暂停是一个关键问题。然而,很少有统计学方法可以同时识别突发和暂停。我们提出了一种新的统计方法,即稳健高斯惊喜(RGS)方法,它可以同时对尖峰列车中的突发和暂停进行穷举搜索。我们发现,RGS 方法适应于体内记录的各种尖峰列车模式,不受基线放电率的影响,因此适用于所有基线放电率随时间变化的体内尖峰列车。我们将 RGS 方法与其他检测突发的方法(如泊松惊喜(PS)、秩惊喜(RS)和模板方法)进行了比较。使用 RGS 方法对数据的分析揭示了 DA 神经元中控制突发和暂停的潜在机制。

相似文献

1
Detection of bursts and pauses in spike trains.检测尖峰神经元放电序列中的爆发与停顿
J Neurosci Methods. 2012 Oct 15;211(1):145-58. doi: 10.1016/j.jneumeth.2012.08.013. Epub 2012 Aug 23.
2
Detecting joint pausiness in parallel spike trains.检测并行脉冲序列中的关节停顿现象。
J Neurosci Methods. 2017 Jun 15;285:69-81. doi: 10.1016/j.jneumeth.2017.05.008. Epub 2017 May 8.
3
A nonparametric approach for detection of bursts in spike trains.一种用于检测尖峰序列中脉冲串的非参数方法。
J Neurosci Methods. 2007 Mar 15;160(2):349-58. doi: 10.1016/j.jneumeth.2006.09.024. Epub 2006 Oct 30.
4
Generating bursts (and pauses) in the dopamine midbrain neurons.在多巴胺中脑神经元中产生脉冲(和停顿)。
Neuroscience. 2014 Dec 12;282:109-21. doi: 10.1016/j.neuroscience.2014.07.032. Epub 2014 Jul 27.
6
Measuring burstiness and regularity in oscillatory spike trains.测量振荡尖峰序列中的爆发性和规则性。
J Neurosci Methods. 2011 Oct 15;201(2):426-37. doi: 10.1016/j.jneumeth.2011.08.013. Epub 2011 Aug 18.

引用本文的文献

9
Burst Firing and Spatial Coding in Subicular Principal Cells.棘旁主细胞的爆发式发放和空间编码。
J Neurosci. 2019 May 8;39(19):3651-3662. doi: 10.1523/JNEUROSCI.1656-18.2019. Epub 2019 Feb 28.
10
Neural Coding With Bursts-Current State and Future Perspectives.具有爆发的神经编码——当前状态与未来展望
Front Comput Neurosci. 2018 Jul 6;12:48. doi: 10.3389/fncom.2018.00048. eCollection 2018.

本文引用的文献

4
Pausing purkinje cells in the cerebellum of the awake cat.在清醒猫的小脑上暂停浦肯野细胞。
Front Syst Neurosci. 2009 Feb 10;3:2. doi: 10.3389/neuro.06.002.2009. eCollection 2009.
8
A simple indicator of nonstationarity of firing rate in spike trains.一种用于衡量尖峰序列中放电率非平稳性的简单指标。
J Neurosci Methods. 2007 Jun 15;163(1):181-7. doi: 10.1016/j.jneumeth.2007.02.021. Epub 2007 Mar 3.
10
A nonparametric approach for detection of bursts in spike trains.一种用于检测尖峰序列中脉冲串的非参数方法。
J Neurosci Methods. 2007 Mar 15;160(2):349-58. doi: 10.1016/j.jneumeth.2006.09.024. Epub 2006 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验