Suppr超能文献

蓝藻中的氨转运、保留和无效循环问题。

The ammonia transport, retention and futile cycling problem in cyanobacteria.

机构信息

Faculty of Technology & Environment, Prince of Songkla University-Phuket Campus, Kathu, Phuket, 83120, Thailand.

出版信息

Microb Ecol. 2013 Jan;65(1):180-96. doi: 10.1007/s00248-012-0111-1. Epub 2012 Sep 1.

Abstract

Ammonia is the preferred nitrogen source for many algae including the cyanobacterium Synechococcus elongatis (Synechococcus R-2; PCC 7942). Modelling ammonia uptake by cells is not straightforward because it exists in solution as NH(3) and NH (4) (+) . NH(3) is readily diffusible not only via the lipid bilayer but also through aquaporins and other more specific porins. On the other hand, NH (4) (+) requires cationic transporters to cross a membrane. Significant intracellular ammonia pools (≈1-10 mol m(-3)) are essential for the synthesis of amino acids from ammonia. The most common model envisaged for how cells take up ammonia and use it as a nitrogen source is the "pump-leak model" where uptake occurs through a simple diffusion of NH(3) or through an energy-driven NH (4) (+) pump balancing a leak of NH(3) out of the cell. The flaw in such models is that cells maintain intracellular pools of ammonia much higher than predicted by such models. With caution, [(14)C]-methylamine can be used as an analogue tracer for ammonia and has been used to test various models of ammonia transport and metabolism. In this study, simple "proton trapping" accumulation by the diffusion of uncharged CH(3)NH(2) has been compared to systems where CH(3)NH (3) (+) is taken up through channels, driven by the membrane potential (ΔU (i,o)) or the electrochemical potential for Na(+) (ΔμNa (i,o) (+) ). No model can be reconciled with experimental data unless the permeability of CH(3)NH(2) across the cell membrane is asymmetric: permeability into the cell is very high through gated porins, whereas permeability out of the cell is very low (≈40 nm s(-1)) and independent of the extracellular pH. The best model is a Na (in) (+) /CH(3)NH (3) (+) (in) co-porter driven by ΔμNa (i,o) (+) balancing synthesis of methylglutamine and a slow leak governed by Ficks law, and so there is significant futile cycling of methylamine across the cell membrane to maintain intracellular methylamine pools high enough for fixation by glutamine synthetase. The modified pump-leak model with asymmetric permeability of the uncharged form is a viable model for understanding ammonia uptake and retention in plants, free-living microbes and organisms in symbiotic relationships.

摘要

氨是许多藻类包括蓝藻(Synechococcus elongatis;PCC 7942)的首选氮源。由于氨在溶液中以 NH(3) 和 NH (4) (+) 的形式存在,因此对细胞吸收氨的建模并不简单。NH(3) 不仅可以通过脂质双层自由扩散,还可以通过水通道蛋白和其他更特异的孔蛋白扩散。另一方面,NH (4) (+) 需要阳离子转运体才能穿过膜。细胞内存在大量的氨库(≈1-10 mol·m(-3))对于从氨合成氨基酸至关重要。细胞吸收氨并将其用作氮源的最常见模型是“泵-漏模型”,其中氨通过简单扩散或通过能量驱动的 NH (4) (+) 泵吸收,同时平衡氨从细胞漏出。这些模型的缺陷在于,细胞内氨库的浓度远远高于这些模型所预测的浓度。谨慎地说,可以使用 [(14)C]-甲胺作为氨的类似示踪剂,并已用于测试各种氨转运和代谢模型。在这项研究中,比较了不带电荷的 CH(3)NH(2) 通过扩散的简单“质子捕获”积累,以及 CH(3)NH (3) (+) 通过通道吸收的系统,该通道由膜电位(ΔU (i,o))或电化学势 Na(+)(ΔμNa (i,o) (+))驱动。除非 CH(3)NH(2) 穿过细胞膜的通透性不对称,否则没有模型可以与实验数据相协调:带电荷的 CH(3)NH(2) 进入细胞的通透性非常高,通过门控孔蛋白,而离开细胞的通透性非常低(≈40 nm·s(-1))且与细胞外 pH 无关。最佳模型是由 ΔμNa (i,o) (+) 驱动的 Na (in) (+)/CH(3)NH (3) (+) (in) 共转运体,该模型平衡了甲基谷氨酰胺的合成和由 Ficks 定律控制的缓慢渗漏,因此,甲基胺通过细胞膜的无效循环非常高,以维持细胞内甲基胺库足够高,以被谷氨酰胺合成酶固定。带电荷形式的不对称通透性的改良泵-漏模型是理解植物、自由生活的微生物和共生关系中的生物体吸收和保留氨的可行模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验