Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA.
Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA.
mBio. 2023 Aug 31;14(4):e0123623. doi: 10.1128/mbio.01236-23. Epub 2023 Jul 5.
is an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade of , nearly all cells can assimilate nitrite (NO), with a subset capable of assimilating nitrate (NO). LLI cells are maximally abundant near the primary NO maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO reduction and subsequent NO release by phytoplankton. We hypothesized that some exhibit incomplete assimilatory NO reduction and examined NO accumulation in cultures of three strains (MIT0915, MIT0917, and SB) and two strains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO during growth on NO. Approximately 20-30% of the NO transported into the cell by MIT0917 was released as NO, with the rest assimilated into biomass. We further observed that co-cultures using NO as the sole N source could be established for MIT0917 and strain MIT1214 that can assimilate NO but not NO. In these co-cultures, the NO released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates within populations. IMPORTANCE Earth's biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations of , the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, some cells release extracellular NO during growth on NO. In the wild, populations are composed of multiple functional types, including those that cannot use NO but can still assimilate NO. We show that metabolic dependencies arise when strains with complementary NO production and consumption phenotypes are grown together on NO. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates.
是海洋中一种丰富的光合细菌,在海洋中,氮(N)通常限制浮游植物的生长。在 的低光适应 LLI 分支中,几乎所有的细胞都可以同化亚硝酸盐(NO),其中一部分能够同化硝酸盐(NO)。在初级 NO 最大值层附近,LLI 细胞的丰度最高,这是一种海洋学特征,部分原因可能是由于浮游植物不完全同化性 NO 还原和随后的 NO 释放。我们假设一些 表现出不完全同化性 NO 还原,并检查了三种 菌株(MIT0915、MIT0917 和 SB)和两种 菌株(WH8102 和 WH7803)的培养物中的 NO 积累。只有 MIT0917 和 SB 在以 NO 为生长基质时积累外部 NO。约有 20-30%由 MIT0917 转运到细胞内的 NO 作为 NO 释放,其余的则被同化到生物量中。我们还观察到,当以 NO 作为唯一 N 源时,MIT0917 和能够同化 NO 但不能同化 NO 的 菌株 MIT1214 可以建立共培养物。在这些共培养物中,MIT0917 释放的 NO 被其伙伴菌株 MIT1214 有效地消耗。我们的研究结果强调了在 种群内由氮循环中间产物的产生和消耗介导的新出现的代谢伙伴关系的潜力。重要性地球的生物地球化学循环在很大程度上是由微生物及其相互作用驱动的。鉴于 N 通常限制海洋光合作用,我们研究了在亚热带开阔海域中占主导地位的光合细胞 种群内 N 交叉喂养的潜力。在实验室培养物中,一些 细胞在以 NO 为生长基质时会释放出细胞外的 NO。在野外, 种群由多种功能类型组成,包括不能使用 NO 但仍能同化 NO 的类型。我们表明,当具有互补 NO 产生和消耗表型的 菌株在以 NO 为生长基质时一起生长时,就会出现代谢依赖性。这些发现表明,通过氮循环中间产物的交叉喂养,可能会出现新的代谢伙伴关系,从而调节海洋营养梯度。