Suppr超能文献

轴突-树突重叠和层状投射可以解释中间神经元与锥体细胞的连接。

Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells.

机构信息

HHMI, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

出版信息

Cereb Cortex. 2013 Dec;23(12):2790-802. doi: 10.1093/cercor/bhs210. Epub 2012 Aug 31.

Abstract

Neocortical GABAergic interneurons have important roles in the normal and pathological states of the circuit. Recent work has revealed that somatostatin-positive (SOM) and parvalbumin-positive (PV) interneurons connect promiscuously to pyramidal cells (PCs). We investigated whether Peters' rule, that is, the spatial overlap of axons and dendrites, could explain this unspecific connectivity. We reconstructed the morphologies of P11-17 mouse SOM and PV interneurons and their PC targets, and performed Monte Carlo simulations to build maps of predicted connectivity based on Peters' rule. We then compared the predicted with the real connectivity maps, measured with 2-photon uncaging experiments, and found no statistical differences between them in the probability of connection as a function of distance and in the spatial structure of the maps. Finally, using reconstructions of connected SOM-PCs and PV-PCs, we investigated the subcellular targeting specificity, by analyzing the postsynaptic position of the contacts, and found that their spatial distributions match the distribution of postsynaptic PC surface area, in agreement with Peters' rule. Thus, the spatial profile of the connectivity maps and even the postsynaptic position of interneuron contacts could result from the mere overlap of axonal and dendritic arborizations and their laminar projections patterns.

摘要

新皮层 GABA 能中间神经元在回路的正常和病理状态中具有重要作用。最近的工作表明,生长抑素阳性(SOM)和钙调蛋白阳性(PV)中间神经元与锥体细胞(PC)之间存在混杂连接。我们研究了彼得斯法则,即轴突和树突的空间重叠,是否可以解释这种非特异性连接。我们重建了 P11-17 只小鼠 SOM 和 PV 中间神经元及其 PC 靶标,并进行了蒙特卡罗模拟,根据彼得斯法则构建了预测连接图。然后,我们将预测的连接图与通过双光子光解实验测量的真实连接图进行比较,发现它们之间的连接概率与距离的函数关系以及地图的空间结构没有统计学差异。最后,我们使用连接的 SOM-PC 和 PV-PC 的重建,通过分析接触的突触后位置,研究了亚细胞靶向特异性,发现它们的空间分布与突触后 PC 表面积的分布相匹配,符合彼得斯法则。因此,连接图的空间分布甚至中间神经元接触的突触后位置都可能仅仅是由于轴突和树突分支的重叠以及它们的层状投射模式所致。

相似文献

1
Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells.
Cereb Cortex. 2013 Dec;23(12):2790-802. doi: 10.1093/cercor/bhs210. Epub 2012 Aug 31.
2
Schaffer Collateral Inputs to CA1 Excitatory and Inhibitory Neurons Follow Different Connectivity Rules.
J Neurosci. 2018 May 30;38(22):5140-5152. doi: 10.1523/JNEUROSCI.0155-18.2018. Epub 2018 May 4.
3
Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types.
PLoS Comput Biol. 2019 May 16;15(5):e1006999. doi: 10.1371/journal.pcbi.1006999. eCollection 2019 May.
5
Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex.
Cereb Cortex. 2007 Jan;17(1):81-91. doi: 10.1093/cercor/bhj126. Epub 2006 Feb 8.
6
Postnatal development of GABAergic interneurons in the neocortical subplate of mice.
Neuroscience. 2016 May 13;322:78-93. doi: 10.1016/j.neuroscience.2016.02.023. Epub 2016 Feb 15.
7
Inhibition by Somatostatin Interneurons in Olfactory Cortex.
Front Neural Circuits. 2016 Aug 17;10:62. doi: 10.3389/fncir.2016.00062. eCollection 2016.

引用本文的文献

1
Connectomics of predicted Sst transcriptomic types in mouse visual cortex.
Nature. 2025 Apr;640(8058):497-505. doi: 10.1038/s41586-025-08805-6. Epub 2025 Apr 9.
3
Developmental trajectory of cortical somatostatin interneuron function.
bioRxiv. 2024 Mar 7:2024.03.05.583539. doi: 10.1101/2024.03.05.583539.
4
Synaptic promiscuity in brain development.
Curr Biol. 2024 Feb 5;34(3):R102-R116. doi: 10.1016/j.cub.2023.12.037.
5
Bringing Anatomical Information into Neuronal Network Models.
Adv Exp Med Biol. 2022;1359:201-234. doi: 10.1007/978-3-030-89439-9_9.
6
Dendritic Domain-Specific Sampling of Long-Range Axons Shapes Feedforward and Feedback Connectivity of L5 Neurons.
J Neurosci. 2022 Apr 20;42(16):3394-3405. doi: 10.1523/JNEUROSCI.1620-21.2022. Epub 2022 Mar 3.
7
Loss of Clustered Protocadherin Diversity Alters the Spatial Distribution of Cortical Interneurons in Mice.
Cereb Cortex Commun. 2020 Nov 25;1(1):tgaa089. doi: 10.1093/texcom/tgaa089. eCollection 2020.
8
Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net.
Brain Struct Funct. 2021 Sep;226(7):2041-2055. doi: 10.1007/s00429-021-02327-3. Epub 2021 Jun 27.
10
Opposed hemodynamic responses following increased excitation and parvalbumin-based inhibition.
J Cereb Blood Flow Metab. 2021 Apr;41(4):841-856. doi: 10.1177/0271678X20930831. Epub 2020 Jun 17.

本文引用的文献

1
Local connections of layer 5 GABAergic interneurons to corticospinal neurons.
Front Neural Circuits. 2011 Sep 29;5:12. doi: 10.3389/fncir.2011.00012. eCollection 2011.
3
Perisomatic inhibition and cortical circuit dysfunction in schizophrenia.
Curr Opin Neurobiol. 2011 Dec;21(6):866-72. doi: 10.1016/j.conb.2011.05.013. Epub 2011 Jun 15.
4
Dense inhibitory connectivity in neocortex.
Neuron. 2011 Mar 24;69(6):1188-203. doi: 10.1016/j.neuron.2011.02.025.
5
Network anatomy and in vivo physiology of visual cortical neurons.
Nature. 2011 Mar 10;471(7337):177-82. doi: 10.1038/nature09802.
6
Visual tuning properties of genetically identified layer 2/3 neuronal types in the primary visual cortex of cre-transgenic mice.
Front Syst Neurosci. 2011 Jan 13;4:162. doi: 10.3389/fnsys.2010.00162. eCollection 2011.
7
The columnar and laminar organization of inhibitory connections to neocortical excitatory cells.
Nat Neurosci. 2011 Jan;14(1):100-7. doi: 10.1038/nn.2687. Epub 2010 Nov 14.
8
Ultrastructural analysis of hippocampal neuropil from the connectomics perspective.
Neuron. 2010 Sep 23;67(6):1009-20. doi: 10.1016/j.neuron.2010.08.014.
9
Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex.
Neuron. 2010 Sep 9;67(5):858-71. doi: 10.1016/j.neuron.2010.08.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验