Arts et Metiers Paris Tech, Angers, France.
Int J Numer Method Biomed Eng. 2012 Sep;28(9):960-73. doi: 10.1002/cnm.2476. Epub 2012 Apr 26.
The numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like techniques, we present here a new technique based on the approximation of the unknown variable (the probability of having a particular chemical state) in terms of a finite sum of separable functions. In this framework, the complexity of the CME grows only linearly with the number of state space dimensions. This technique generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition for ensuring convergence. But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is frequently the case when modeling gene regulatory networks, for instance). These unknown parameters can be considered as new space dimensions. In this way, the proposed method provides solutions for any value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.
由于其复杂性,基因调控网络和细胞信号处理的化学反应主方程(CME)的数值解仍然是一项具有挑战性的任务,其规模随涉及的物种数量呈指数增长。尽管大多数现有技术都依赖于使用类似于蒙特卡罗的技术,但我们在这里提出了一种新的技术,该技术基于用有限个可分离函数的和来逼近未知变量(具有特定化学状态的概率)。在这个框架中,CME 的复杂性仅随状态空间维度的数量呈线性增长。该技术通过在有限和分解中使用所需的项来推广所谓的哈特ree 逼近,以确保收敛。但值得注意的是,这种逼近的简单性允许轻松处理未知参数(例如在基因调控网络建模中经常出现的情况)。这些未知参数可以被视为新的空间维度。通过这种方式,所提出的方法可以在程序的一次执行中为任意大小的未知参数(在任意大小的区间内)的值提供解决方案。