Suppr超能文献

在升高的 CO2 浓度下,作物蒸腾作用的减少和养分分配的改变导致养分下降。

Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO(2) concentrations.

机构信息

Department of Crop Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, US.

出版信息

Plant Cell Environ. 2013 Mar;36(3):697-705. doi: 10.1111/pce.12007. Epub 2012 Oct 3.

Abstract

Plants grown in elevated [CO(2) ] have lower protein and mineral concentrations compared with plants grown in ambient [CO(2) ]. Dilution by enhanced production of carbohydrates is a likely cause, but it cannot explain all of the reductions. Two proposed, but untested, hypotheses are that (1) reduced canopy transpiration reduces mass flow of nutrients to the roots thus reducing nutrient uptake and (2) changes in metabolite or enzyme concentrations caused by physiological changes alter requirements for minerals as protein cofactors or in other organic complexes, shifting allocation between tissues and possibly altering uptake. Here, we use the meta-analysis of previous studies in crops to test these hypotheses. Nutrients acquired mostly by mass flow were decreased significantly more by elevated [CO(2) ] than nutrients acquired by diffusion to the roots through the soil, supporting the first hypothesis. Similarly, Mg showed large concentration declines in leaves and wheat stems, but smaller decreases in other tissues. Because chlorophyll requires a large fraction of total plant Mg, and chlorophyll concentration is reduced by growth in elevated [CO(2) ], this supports the second hypothesis. Understanding these mechanisms may guide efforts to improve nutrient content, and allow modeling of nutrient changes and health impacts under future climate change scenarios.

摘要

与在大气[CO(2)]中生长的植物相比,在高浓度[CO(2)]中生长的植物的蛋白质和矿物质浓度较低。这可能是由于碳水化合物产量增加导致的稀释作用,但并不能解释所有的减少。有两个未经测试的假设,一是(1)冠层蒸腾减少会减少养分向根部的质量流,从而减少养分吸收;二是(2)生理变化引起的代谢物或酶浓度的变化会改变矿物质作为蛋白质辅因子或其他有机复合物的需求,从而改变组织间的分配,并可能改变吸收。在这里,我们使用对作物以前研究的荟萃分析来检验这些假设。通过质量流获得的营养物质比通过土壤扩散到根部获得的营养物质受高浓度[CO(2)]的影响要大得多,这支持了第一个假设。同样,Mg 在叶片和小麦茎中表现出较大的浓度下降,但在其他组织中下降较小。由于叶绿素需要植物总 Mg 的很大一部分,并且在高浓度[CO(2)]下生长会导致叶绿素浓度降低,这支持了第二个假设。了解这些机制可能有助于提高营养成分,并允许在未来气候变化情景下对营养成分变化和健康影响进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验