Suppr超能文献

A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum.

作者信息

Bonifacino J S, Suzuki C K, Klausner R D

机构信息

Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892.

出版信息

Science. 1990 Jan 5;247(4938):79-82. doi: 10.1126/science.2294595.

Abstract

A nonlysosomal pathway exists for the degradation of newly synthesized proteins retained within the endoplasmic reticulum (ER). This pathway is extremely selective: whereas some proteins are rapidly degraded, others survive for long periods in the ER. The question of whether this selectivity is due to the presence within the sensitive proteins of definable peptide sequences that are sufficient to target them for degradation has been addressed. Deletion of a carboxyl-terminal sequence, comprising the transmembrane domain and short cytoplasmic tail of the alpha chain of the T cell antigen receptor (TCR-alpha), prevented the rapid degradation of this polypeptide. Fusion of this carboxyl-terminal sequence to the extracellular domain of the Tac antigen, a protein that is normally transported to the cell surface where it survives long-term, resulted in the retention and rapid degradation of the chimeric protein in the ER. Additional mutagenesis revealed that the transmembrane domain of TCR-alpha alone was sufficient to cause degradation within the ER. This degradation was not a direct consequence of retention in the ER, as blocking transport of newly synthesized proteins out of the ER with brefeldin A did not lead to degradation of the normal Tac antigen. It is proposed that a 23-amino acid sequence, comprising the transmembrane domain of TCR-alpha, contains information that determines targeting for degradation within the ER system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验