Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D , Pepparedsleden 1, S-431 83 Mölndal, Sweden.
Chem Res Toxicol. 2012 Oct 15;25(10):2236-52. doi: 10.1021/tx300313b. Epub 2012 Sep 20.
The metabolism of aromatic and heteroaromatic amines (ArNH₂) results in nitrenium ions (ArNH⁺) that modify nucleobases of DNA, primarily deoxyguanosine (dG), by forming dG-C8 adducts. The activated amine nitrogen in ArNH⁺ reacts with the C8 of dG, which gives rise to mutations in DNA. For the most mutagenic ArNH₂, including the majority of known genotoxic carcinogens, the stability of ArNH⁺ is of intermediate magnitude. To understand the origin of this observation as well as the specificity of reactions of ArNH⁺ with guanines in DNA, we investigated the chemical reactivity of the metabolically activated forms of ArNH₂, that is, ArNHOH and ArNHOAc, toward 9-methylguanine by DFT calculations. The chemical reactivity of these forms is determined by the rate constants of two consecutive reactions leading to cationic guanine intermediates. The formation of ArNH⁺ accelerates with resonance stabilization of ArNH⁺, whereas the formed ArNH⁺ reacts with guanine derivatives with the constant diffusion-limited rate until the reaction slows down when ArNH⁺ is about 20 kcal/mol more stable than PhNH⁺. At this point, ArNHOH and ArNHOAc show maximum reactivity. The lowest activation energy of the reaction of ArNH⁺ with 9-methylguanine corresponds to the charge-transfer π-stacked transition state (π-TS) that leads to the direct formation of the C8 intermediate. The predicted activation barriers of this reaction match the observed absolute rate constants for a number of ArNH⁺. We demonstrate that the mutagenic potency of ArNH₂ correlates with the rate of formation and the chemical reactivity of the metabolically activated forms toward the C8 atom of dG. On the basis of geometric consideration of the π-TS complex made of genotoxic compounds with long aromatic systems, we propose that precovalent intercalation in DNA is not an essential step in the genotoxicity pathway of ArNH₂. The mechanism-based reasoning suggests rational design strategies to avoid genotoxicity of ArNH₂ primarily by preventing N-hydroxylation of ArNH₂.
芳香族和杂环族胺(ArNH₂)的代谢会产生氮宾离子(ArNH⁺),这些离子通过形成 dG-C8 加合物来修饰 DNA 的核碱基,主要是脱氧鸟嘌呤(dG)。ArNH⁺中的活化胺氮与 dG 的 C8 反应,导致 DNA 发生突变。对于最具致突变性的 ArNH₂,包括大多数已知的遗传毒性致癌物质,ArNH⁺的稳定性处于中等程度。为了了解这种观察结果的起源以及 ArNH⁺与 DNA 中鸟嘌呤反应的特异性,我们通过 DFT 计算研究了代谢活化形式的 ArNH₂,即 ArNHOH 和 ArNHOAc,与 9-甲基鸟嘌呤的化学反应性。这些形式的化学反应性由导致阳离子鸟嘌呤中间体的两个连续反应的速率常数决定。ArNH⁺的形成随着 ArNH⁺的共振稳定而加速,而形成的 ArNH⁺与鸟嘌呤衍生物反应,以扩散限制的恒定速率进行,直到当 ArNH⁺比 PhNH⁺稳定约 20 kcal/mol 时,反应速度减慢。此时,ArNHOH 和 ArNHOAc 表现出最大的反应性。与 9-甲基鸟嘌呤反应的 ArNH⁺的最低活化能对应于电荷转移π堆积过渡态(π-TS),该过渡态导致 C8 中间体的直接形成。该反应的预测活化能与 ArNH⁺的许多观察到的绝对速率常数相匹配。我们证明了 ArNH₂的致突变能力与代谢活化形式与 dG 的 C8 原子形成的速率以及对 C8 原子的化学反应性相关。基于对具有长芳族系统的遗传毒性化合物的π-TS 复合物的几何考虑,我们提出在 ArNH₂的遗传毒性途径中,预共价插入 DNA 不是必需步骤。基于机制的推理表明了合理的设计策略,主要是通过防止 ArNH₂的 N-羟化来避免 ArNH₂的遗传毒性。