Suppr超能文献

采用放射性核素追踪数据拟合时间-活性曲线的混合模型预测 I-131 放射免疫治疗的肿瘤吸收剂量估计值。

Prediction of therapy tumor-absorbed dose estimates in I-131 radioimmunotherapy using tracer data via a mixed-model fit to time activity.

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Cancer Biother Radiopharm. 2012 Sep;27(7):403-11. doi: 10.1089/cbr.2011.1053.

Abstract

BACKGROUND

For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors.

METHODS

The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation.

RESULTS

The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within ± 25% (or within ± 75 cGy) for 80% of tumors.

CONCLUSIONS

The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT.

摘要

背景

为了实现放射性免疫治疗(RIT)的个体化治疗计划,必须建立示踪剂预测的吸收剂量与治疗给予的吸收剂量之间的相关性。本研究的重点是研究肿瘤中的这种相关性。

方法

该研究分析了 19 例滤泡性淋巴瘤患者的 57 个肿瘤,这些患者在接受 I-131 托西莫单抗治疗后,多次进行 SPECT/CT 扫描,分别在示踪剂和治疗后进行。该研究不是通过对单个肿瘤的测量时间-活性数据进行典型的最小二乘拟合,而是通过双指数混合模型来完成估计,其中来自多个主体的曲线是联合估计的。通过患者特定的蒙特卡罗计算确定肿瘤吸收剂量估计值。

结果

混合模型给出了现实的肿瘤时间-活性拟合,即使在数据存在噪声或缺少时间点的情况下,也能显示出预期的摄取和清除阶段。示踪剂和治疗肿瘤滞留时间之间的相关性(r=0.98;p<0.0001)和示踪剂预测的和治疗给予的平均肿瘤吸收剂量之间的相关性(r=0.86;p<0.0001)非常高。对于 80%的肿瘤,预测的和给予的吸收剂量在±25%(或±75 cGy)范围内。

结论

当由于采样点不足而无法进行个体最小二乘拟合时,混合模型方法对于 RIT 治疗计划中的拟合肿瘤时间-活性数据是可行的。预测和给予的肿瘤剂量之间的良好相关性表明,使用治疗前示踪剂研究进行 RIT 基于肿瘤剂量学的治疗计划具有潜力。

相似文献

引用本文的文献

4
Mapping nephron mass in vivo using positron emission tomography.利用正电子发射断层扫描技术对活体肾单位进行成像。
Am J Physiol Renal Physiol. 2021 Feb 1;320(2):F183-F192. doi: 10.1152/ajprenal.00418.2020. Epub 2020 Dec 7.

本文引用的文献

5
Kinetic modeling in support of radionuclide dose assessment.支持放射性核素剂量评估的动力学建模。
Semin Nucl Med. 2008 Sep;38(5):335-46. doi: 10.1053/j.semnuclmed.2008.05.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验