Suppr超能文献

177Lu-DOTATATE肽受体放射性核素治疗中临床患者及真实模拟条件下,减少时间点成像对时间积分活度的影响的准确性和不确定性分析

Accuracy and uncertainty analysis of reduced time point imaging effect on time-integrated activity for 177Lu-DOTATATE PRRT in clinical patients and realistic simulations.

作者信息

Peterson Avery B, Mirando David M, Dewaraja Yuni K

机构信息

Wayne State University School of Medicine.

MIM Software Inc.

出版信息

Res Sq. 2023 Apr 21:rs.3.rs-2829731. doi: 10.21203/rs.3.rs-2829731/v1.

Abstract

Dosimetry promises many advantages for radiopharmaceutical therapies but repeat post-therapy imaging for dosimetry can burden both patients and clinics. Recent applications of reduced time point imaging for time-integrated activity (TIA) determination for internal dosimetry following Lu-DOTATATE peptide receptor radionuclide therapy have shown promising results that allow for the simplification of patient-specific dosimetry. However, factors such as scheduling can lead to undesirable imaging time points, but the resulting impact on dosimetry accuracy is unknown. We use four-time point Lu SPECT/CT data for a cohort of patients treated at our clinic to perform a comprehensive analysis of the error and variability in time-integrated activity when reduced time point methods with various combination of sampling points are employed. The study includes 28 patients with gastroenteropancreatic neuroendocrine tumors who underwent post-therapy SPECT/CT imaging at approximately 4, 24, 96, and 168 hours post-therapy (p.t.) following the first cycle of Lu-DOTATATE. The healthy liver, left/right kidney, spleen and up to 5 index tumors were delineated for each patient. Time-activity curves were fit with either monoexponential or biexponential functions for each structure, based on the Akaike information criterion. This fitting was performed using all 4 time points as a reference and various combinations of 2 and 3 time points to determine optimal imaging schedules and associated errors. 2 commonly used methods of single time point (STP) TIA estimation are also evaluated. A simulation study was also performed with data generated by sampling curve fit parameters from log-normal distributions derived from the clinical data and adding realistic measurement noise to sampled activities. For both clinical and simulation studies, error and variability in TIA estimates were estimated with various sampling schedules. . The optimal post-therapy imaging time period for STP estimates of TIA was found to be 3-5 days (71-126 h) p.t. for tumor and organs, with one exception of 6-8 days (144-194 h) p.t. for spleen with one STP approach. At the optimal time point, STP estimates give mean percent errors (MPE) within +/-5% and SD < 9% across all structures with largest magnitude error for kidney TIA (MPE=-4.1%) and highest variability also for kidney TIA (SD=8.4%). The optimal sampling schedule for 2TP estimates of TIA is 1-2 days (21-52 h) p.t. followed by 3-5 days (71-126 h) p.t. for kidney, tumor, and spleen. Using the optimal sampling schedule, the largest magnitude MPE for 2TP estimates is 1.2% for spleen and highest variability is in tumor with SD=5.8%. The optimal sampling schedule for 3TP estimates of TIA is 1-2 days (21-52 h) p.t. followed by 3-5 days (71-126 h) p.t. and 6-8 days (144-194 h) p.t. for all structures. Using the optimal sampling schedule, the largest magnitude MPE for 3TP estimates is 2.5% for spleen and highest variability is in tumor with SD=2.1%. Simulated patient results corroborate these findings with similar optimal sampling schedules and errors. Many sub-optimal reduced time point sampling schedules also exhibit low error and variability. We show that reduced time point methods can be used to achieve acceptable average TIA errors over a wide range of imaging time points and sampling schedules while maintaining low uncertainty. This information can improve the feasibility of dosimetry for Lu-DOTATATE and elucidate the uncertainty associated with non-ideal conditions.

摘要

剂量测定法为放射性药物治疗带来了诸多优势,但治疗后重复进行剂量测定成像会给患者和诊所带来负担。最近,在¹⁷⁷Lu-DOTATATE肽受体放射性核素治疗后,应用减少时间点成像来确定体内剂量测定的时间积分活度(TIA)已显示出有前景的结果,这使得患者特异性剂量测定得以简化。然而,诸如日程安排等因素可能导致不理想的成像时间点,但其对剂量测定准确性的影响尚不清楚。我们使用在我们诊所接受治疗的一组患者的四次时间点¹⁷⁷Lu SPECT/CT数据,对采用不同采样点组合的减少时间点方法时时间积分活度的误差和变异性进行全面分析。该研究纳入了28例胃肠胰神经内分泌肿瘤患者,他们在¹⁷⁷Lu-DOTATATE的第一个周期治疗后,于治疗后(p.t.)约4、24、96和168小时接受了治疗后SPECT/CT成像。为每位患者勾勒出健康肝脏、左/右肾、脾脏以及多达5个索引肿瘤。根据赤池信息准则,对每个结构的时间-活度曲线用单指数或双指数函数进行拟合。这种拟合以所有4个时间点作为参考,并使用2个和3个时间点的各种组合来确定最佳成像日程安排和相关误差。还评估了2种常用的单时间点(STP)TIA估计方法。还进行了一项模拟研究,数据由从临床数据导出的对数正态分布中采样曲线拟合参数生成,并在采样活度中添加实际测量噪声。对于临床研究和模拟研究,均采用各种采样日程安排来估计TIA的误差和变异性。发现STP估计TIA的最佳治疗后成像时间段对于肿瘤和器官是治疗后3 - 5天(71 - 126小时),脾脏有一个例外,一种STP方法下是治疗后6 - 8天(144 - 194小时)。在最佳时间点,STP估计在所有结构中给出的平均百分比误差(MPE)在±5%以内,标准差(SD)<9%,肾脏TIA的误差幅度最大(MPE = -4.1%),肾脏TIA的变异性也最高(SD = 8.4%)。TIA的2TP估计的最佳采样日程安排是治疗后1 - 2天(21 - 52小时),随后肾脏、肿瘤和脾脏是治疗后3 - 5天(71 - 126小时)。使用最佳采样日程安排,2TP估计的最大MPE对于脾脏是1.2%,变异性最高的是肿瘤,SD = 5.8%。TIA的3TP估计的最佳采样日程安排是治疗后1 - 2天(21 - 52小时),随后所有结构是治疗后3 - 5天(71 - 126小时)和6 - 8天(144 - 194小时)。使用最佳采样日程安排,3TP估计的最大MPE对于脾脏是2.5%,变异性最高的是肿瘤,SD = 2.1%。模拟患者结果用类似的最佳采样日程安排和误差证实了这些发现。许多次优的减少时间点采样日程安排也表现出低误差和低变异性。我们表明,减少时间点方法可用于在广泛的成像时间点和采样日程安排上实现可接受的平均TIA误差,同时保持低不确定性。这些信息可以提高¹⁷⁷Lu-DOTATATE剂量测定的可行性,并阐明与非理想条件相关的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d856/10153357/e5d7f103a428/nihpp-rs2829731v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验