Suppr超能文献

基于局部鲁棒统计和区域可扩展拟合的计算机断层扫描图像分割。

Segmentation of computer tomography image using local robust statistics and region-scalable fitting.

机构信息

ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing University, China.

出版信息

J Xray Sci Technol. 2012;20(3):255-67. doi: 10.3233/XST-2012-0334.

Abstract

Intensity inhomogeneity may cause considerable difficulties in segmentation of CT image. In order to overcome the difficulties caused by intensity inhomogeneity, the region-scalable fitting (RSF) model was put forward. RSF model draws upon intensity information in local regions with a controllable scale. But only using intensity information may lead to slow convergence rate and poor denoise ability. Combining the method of robust statistics, RSF model is improved in this paper. In the improved model, the intensity in RSF model is replaced with local robust statistics which is the weighted combination of inter-quartile range, mean absolute deviation and intensity median in local region. Inter-quartile range and mean absolute deviation in local region are introduced to sharpen object boundaries, and intensity median in local region is introduced to reduce image noise. The contrast experiments between RSF model and the improved model are provided, which demonstrate the fast convergence rate and robustness to noise of the improved model.

摘要

不均匀的强度可能会给 CT 图像分割带来很大的困难。为了克服强度不均匀带来的困难,提出了区域可扩展拟合(RSF)模型。RSF 模型利用具有可控尺度的局部区域的强度信息。但是,仅使用强度信息可能会导致收敛速度慢和去噪能力差。本文结合稳健统计方法,对 RSF 模型进行了改进。在改进的模型中,RSF 模型中的强度被替换为局部稳健统计量,这是局部区域中四分位距、平均绝对偏差和强度中位数的加权组合。局部区域中的四分位距和平均绝对偏差用于锐化目标边界,而局部区域中的强度中位数用于减少图像噪声。提供了 RSF 模型和改进模型之间的对比实验,结果表明改进模型具有快速收敛速度和对噪声的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验