Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15206-11. doi: 10.1073/pnas.1202047109. Epub 2012 Sep 4.
Worldwide, increasing numbers of insects have evolved resistance to a wide range of pesticides, which hampers their control in the field and, therefore, threatens agriculture. Members of the carboxylesterase and cytochrome P450 monooxygenase superfamilies are prominent candidates to confer metabolic resistance to pyrethroid insecticides. Both carboxylesterases and P450 enzymes have been shown to be involved in pyrethroid resistance in Australian Helicoverpa armigera, the noctuid species possessing by far the most reported resistance cases worldwide. However, specific enzymes responsible for pyrethroid resistance in field populations of this species have not yet been identified. Here, we show that the resistance toward fenvalerate in an Australian strain of H. armigera is due to a unique P450 enzyme, CYP337B3, which arose from unequal crossing-over between two parental P450 genes, resulting in a chimeric enzyme. CYP337B3 is capable of metabolizing fenvalerate into 4'-hydroxyfenvalerate, which exhibits no toxic effect on susceptible larvae; enzymes from the parental P450 genes showed no detectable fenvalerate metabolism. Furthermore, a polymorphic H. armigera strain could be bred into a susceptible line possessing the parental genes CYP337B1 and CYP337B2 and a resistant line possessing only CYP337B3. The exclusive presence of CYP337B3 in resistant insects of this strain confers a 42-fold resistance to fenvalerate. Thus, in addition to previously documented genetic mechanisms of resistance, recombination can also generate selectively advantageous variants, such as this chimeric P450 enzyme with an altered substrate specificity leading to a potent resistance mechanism.
全世界范围内,越来越多的昆虫对多种杀虫剂产生了抗药性,这使得它们在田间的防治变得更加困难,从而对农业构成了威胁。羧酸酯酶和细胞色素 P450 单加氧酶超家族的成员是赋予拟除虫菊酯杀虫剂代谢抗性的重要候选者。已经证明羧酸酯酶和 P450 酶都参与了澳大利亚棉铃虫的拟除虫菊酯抗性,作为鳞翅目物种,它拥有迄今为止世界上报道的最多抗性案例。然而,该物种田间种群中导致对拟除虫菊酯产生抗性的特定酶还尚未确定。在这里,我们表明,澳大利亚棉铃虫品系对氰戊菊酯的抗性是由于一种独特的 P450 酶 CYP337B3 引起的,该酶是由两个亲本 P450 基因之间的不等交换产生的,导致形成了一种嵌合酶。CYP337B3 能够将氰戊菊酯代谢为 4'-羟基氰戊菊酯,后者对敏感幼虫没有毒性作用;亲本 P450 基因的酶没有检测到氰戊菊酯的代谢。此外,一个多态性的棉铃虫品系可以被培育成一个具有亲本基因 CYP337B1 和 CYP337B2 的敏感系和一个仅具有 CYP337B3 的抗性系。该品系中抗性昆虫中 CYP337B3 的特有存在赋予了其对氰戊菊酯 42 倍的抗性。因此,除了先前记录的遗传抗性机制外,重组还可以产生具有选择性优势的变体,例如这种具有改变的底物特异性的嵌合 P450 酶,导致了一种有效的抗性机制。