Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005, USA.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15168-73. doi: 10.1073/pnas.1208638109. Epub 2012 Sep 4.
Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li(+) gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.
在这里,我们报告了一种通过连续且可重复的刻蚀-渗透-剥离循环从硅片上推出锂离子电池组件的方法。从回收的硅片上刻蚀得到的垂直排列的硅纳米线被捕获在聚合物基体中,该基体充当 Li(+)凝胶电解质和电极隔离物,并将其剥离,从而从单个晶圆上制造出多个电池器件。多孔、电互连的铜纳米壳被共形沉积在硅纳米线周围,以在延长的循环中稳定电极,并提供有效的电流收集。使用上述开发的工艺,我们展示了一种可运行的全电池 3.4 V 锂聚合物硅纳米线(LIPOSIL)电池,该电池具有机械柔韧性并且可扩展到较大尺寸。