Suppr超能文献

由稻壳同步衍生的活性炭修饰球形硅纳米晶复合材料用于锂离子电池的阳极材料

Activated Carbon-Decorated Spherical Silicon Nanocrystal Composites Synchronously-Derived from Rice Husks for Anodic Source of Lithium-Ion Battery.

作者信息

Sekar Sankar, Aqueel Ahmed Abu Talha, Inamdar Akbar I, Lee Youngmin, Im Hyunsik, Kim Deuk Young, Lee Sejoon

机构信息

Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea.

Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea.

出版信息

Nanomaterials (Basel). 2019 Jul 23;9(7):1055. doi: 10.3390/nano9071055.

Abstract

The nanocomposites of activated-carbon-decorated silicon nanocrystals (ACAC) were synchronously derived in a single step from biomass rice husks, through the simple route of the calcination method together with the magnesiothermic reduction process. The final product, ACAC, exhibited an aggregated structure of activated-carbon-encapsulated nanocrystalline silicon spheres, and reveals a high specific surface area (498.5 m/g). Owing to the mutualization of advantages from both silicon nanocrystals (i.e., low discharge potential and high specific capacity) and activated carbon (i.e., high porosity and good electrical conductivity), the ACAC nanocomposites are able to play a substantial role as an anodic source material for the lithium-ion battery (LIB). Namely, a high coulombic efficiency (97.5%), a high discharge capacity (716 mAh/g), and a high reversible specific capacity (429 mAh/g after 100 cycles) were accomplished when using ACAC as an LIB anode. The results advocate that the simultaneous synthesis of biomass-derived ACAC is beneficial for green energy-storage device applications.

摘要

活性炭修饰的硅纳米晶体(ACAC)纳米复合材料是通过煅烧法与镁热还原过程的简单路线,从生物质稻壳中一步同步衍生而来的。最终产物ACAC呈现出活性炭包裹的纳米晶硅球的聚集结构,并且具有高比表面积(498.5 m/g)。由于硅纳米晶体(即低放电电位和高比容量)和活性炭(即高孔隙率和良好的导电性)两者优势的相互结合,ACAC纳米复合材料能够作为锂离子电池(LIB)的阳极源材料发挥重要作用。也就是说,当使用ACAC作为LIB阳极时,实现了高库仑效率(97.5%)、高放电容量(716 mAh/g)和高可逆比容量(100次循环后为429 mAh/g)。结果表明,生物质衍生的ACAC的同步合成有利于绿色储能装置的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f245/6669463/96959092d570/nanomaterials-09-01055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验